98%
921
2 minutes
20
Moisture-electricity generators (MEGs) hold great promise for green energy conversion. However, existing devices focus on the need for complex gradient distribution treatments and the improvement in output voltage, overlooking the important role of the graphene oxide (GO) oxidation degree and the response time and recovery time in practical application. In this work, we develop printed MEGs by synthesizing reduced graphene oxide/silver nanoparticle (rGO/Ag) composites and controlling the GO oxidation degree. The rGO/Ag layer serves as a functional component that enhances cycling stability and shortens the recovery time. Additionally, compared to conventional rigid-structure devices, these flexible MEGs can be produced by inkjet printing and drop-casting techniques. A 1 cm MEG can generate a voltage of up to 60 mV within 2.4 s. Notably, higher output voltages can be easily achieved by connecting multiple MEG units in series, with 10 units producing 200 mV even under low relative humidity (RH). This work presents a low-cost, highly flexible, lightweight, and scalable power generator, paving the way for broader applications of GO and further advancement of MEG technology in wearable electronics, respiratory monitoring, and Internet of Things applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12194753 | PMC |
http://dx.doi.org/10.3390/ma18122766 | DOI Listing |
Cureus
August 2025
Acute Medicine, Weston General Hospital, University Hospitals Bristol and Weston, Weston-super-Mare, GBR.
Methemoglobinemia is an uncommon yet potentially life-threatening condition that results from the oxidation of iron from the ferrous (Fe²⁺) to the ferric (Fe³⁺) state, rendering hemoglobin unable to effectively transport oxygen. This translates into a state of functional hypoxia despite adequate arterial oxygen tension. Among the various causes of acquired methemoglobinemia, recreational inhalation of alkyl nitrites, widely known as "poppers," is a notable but underrecognized trigger.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.
View Article and Find Full Text PDFDiabetologia
September 2025
Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
Aims/hypothesis: Unimolecular peptides targeting the receptors for glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon (GCG) have been shown to improve glycaemic management in both mice and humans. Yet the identity of the downstream signalling events mediated by these peptides remain to be elucidated. Here, we aimed to assess the mechanisms by which a validated peptide triagonist for GLP-1/GIP/GCG receptors (IUB447) stimulates insulin secretion in murine pancreatic islets.
View Article and Find Full Text PDFChemistry
September 2025
Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der Ruhr, Germany.
In this study, we seek to deepen the understanding of the Fe effect in Ni-oxyhydroxide-mediated oxygen evolution reaction (OER) electrocatalysis in alkaline conditions, where extremely small amounts of Fe can have a dramatic impact on catalytic performance. For this purpose, Density Functional Theory (DFT) electronic structure calculations with implicit solvation description is employed in a constant pH/potential simulation framework. Nanoparticle models are considered for the nickel-based oxyhydroxide material with different degrees of Fe incorporation, and the pH/U-dependent interface structure is studied.
View Article and Find Full Text PDFInorg Chem
September 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
Confronting the dual challenges of carbon neutrality and sustainable energy, photocatalytic CO reduction requires precise control over product selectivity. This study demonstrates that surface hydroxyl (-OH) density serves as a molecular switch for reaction pathways in graphene oxide/cobalt tetraphenylporphyrin (GO/CoTPP) hybrids. By tuning the reduction degree of GO supports via gradient hydrazine hydrate treatment (0-85%), we constructed catalysts with controlled -OH concentrations.
View Article and Find Full Text PDF