Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this article, the role of downscaling in boosting the sensitivity of a novel label-free DNA sensor based on sub-10 nm dielectric-modulated transition metal dichalcogenide field-effect transistors (DM-TMD FET) is presented through a quantum simulation approach. The computational method is based on self-consistently solving the quantum transport equation coupled with electrostatics under ballistic transport conditions. The concept of dielectric modulation was employed as a label-free biosensing mechanism for detecting neutral DNA molecules. The computational investigation is exhaustive, encompassing the band profile, charge density, current spectrum, local density of states, drain current, threshold voltage behavior, sensitivity, and subthreshold swing. Four TMD materials were considered as the channel material, namely, MoS, MoSe, MoTe, and WS. The investigation of the scaling capability of the proposed label-free gate-all-around DM-TMDFET-based biosensor showed that gate downscaling is a valuable approach not only for producing small biosensors but also for obtaining high biosensing performance. Furthermore, we found that reducing the device size from 12 nm to 9 nm yields only a moderate improvement in sensitivity, whereas a more aggressive downscaling to 6 nm leads to a significant enhancement in sensitivity, primarily due to pronounced short-channel effects. The obtained results have significant technological implications, showing that miniaturization enhances the sensitivity of the proposed nanobiosensor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12195378PMC
http://dx.doi.org/10.3390/mi16060690DOI Listing

Publication Analysis

Top Keywords

quantum simulation
8
label-free dna
8
based sub-10
8
sub-10 dielectric-modulated
8
sensitivity
6
simulation study
4
study ultrascaled
4
label-free
4
ultrascaled label-free
4
dna sensors
4

Similar Publications

Surface-Driven Electron Localization and Defect Heterogeneity in Ceria.

J Am Chem Soc

September 2025

Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.

The exceptional performance of ceria (CeO) in catalysis and energy conversion is fundamentally governed by its defect chemistry, particularly oxygen vacancies. The formation of each oxygen vacancy (V) is assumed to be compensated by two localized electrons on cations (Ce). Here, we show by combining theory with experiment that while this 1 V: 2Ce ratio accounts for the global charge compensation, it does not apply at the local scale, particularly in nanoparticles.

View Article and Find Full Text PDF

Semiconductor quantum dots (QDs) are well known to give rise to a quantum confined structure of excitons. Because of this quantum confinement, new physics of hot exciton relaxation dynamics arises. Decades of work using transient absorption (TA) spectroscopy have yielded initial simple observations, such as estimates of the cooling rate from single pump photon energy experiments.

View Article and Find Full Text PDF

Using angle-resolved photoemission spectroscopy (ARPES) with spin resolution, scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) methods, we study the electronic structure of graphene-covered and bare Au/Co(0001) systems and reveal intriguing features, arising from the ferrimagnetic order in graphene and the underlying gold monolayer. In particular, a spin-polarized Dirac-cone-like state, intrinsically related to the induced magnetization of Au, was discovered at point. We have obtained a good agreement between experiment and theory for bare and graphene-covered Au/Co(0001) and have proven that both Au ferrimagnetism and the Dirac-cone-like band are intimately linked to the triangular loop dislocations present at the Au/Co interface.

View Article and Find Full Text PDF

Promotion of CO Reactivity by Organic Acid on Aerosol Surfaces.

J Am Chem Soc

September 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Recently, the atmospheric aerosol surface, which is reported to be quite acidic, is recognized as an important microreactive medium for atmospheric chemistry, profoundly impacting air quality and global climate. Nevertheless, the molecular-level understanding of the effect of surface-bound acids on atmospheric chemical reactions remains limited. Herein, the reactions between CO and NH/amines at the air-water interface with organic acids are investigated using combined molecular dynamic simulations and quantum chemical calculations.

View Article and Find Full Text PDF

Electrolytes are important components in lithium-ion batteries. However, battery degradation due to irreversible electrochemical reactions in the electrolyte can consume electrolyte molecules and severely reduce its effective operation lifetime. It is hence important to study the electrochemical reaction pathways in the battery electrolyte to further improve lithium-ion battery reliability.

View Article and Find Full Text PDF