98%
921
2 minutes
20
We report on the development of copolymers of 2-hydroxy ethyl acrylate (HEA) with 2-(2-ethoxy ethoxy) ethyl acrylate (EEEA) grafted with ethylene glycol di-methacrylate, designed for use as an intraocular lens (IOL) material. Various HEA/EEEA monomer ratios were synthesized via thermal copolymerization, with the HEA concentration progressively increasing from 3.5% to 28%, while the EEEA concentration decreased proportionately. The physical-chemical, optical, and mechanical properties of the newly developed materials, fabricated as discs (∼3.2 mm thick, 11 mm in diameter) and strips (∼3.2 mm thick, 80 × 15 mm), were comprehensively analyzed. Fourier-Transform Infrared Spectroscopy confirmed the successful copolymerization, as characteristic peaks corresponding to the monomers were observed. Since the development of IOL materials hinges on understanding their physical-chemical, optical, and mechanical characteristics-particularly the equilibrium water content (EWC)-our initial focus was on identifying EWC as a key factor in the development of IOLs. The results showed that the EWC value increased with higher HEA concentrations. Contact angle measurements indicated that the polymers exhibited hydrophilic behavior, with values ranging from 68 to 76°. X-ray diffraction analysis demonstrated that the HEA concentration influenced the crystalline structure, which, in turn, affected the mechanical properties. The results indicated that higher HEA concentrations, corresponding to increased EWC values (i.e. ∼8%), led to enhanced flexibility, as evidenced by a decrease in tensile strength from 1.71 to 1.13 MPa, and reduced hardness, which declined from 57.5 to 47.5 Shore A. Additionally, refractive index analyses revealed a gradual decrease with increasing HEA concentrations, ranging from 1.565 to 1.543 when measured at 480 nm and from 1.547 to 1.528 when measured at 660 nm. The evaluation of the coefficient of variation and Pearson's correlation coefficient demonstrated strong material consistency and clear trends across formulations, reinforcing the reliability of the observed properties. These findings emphasize the significance of EWC and the ratio of hydrophilic monomers in acrylic-based copolymers, suggesting that future research could benefit from designing copolymers with tailored physical-chemical, optical, and mechanical properties for IOL applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-605X/ade8c7 | DOI Listing |
J Phys Chem Lett
September 2025
College of Materials Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, P. R. China.
Aqueous zinc-ion microbatteries exhibit promising prospects for wearable devices due to their high safety and cost-effectiveness but face challenges such as low energy density and short cycle life. To address these challenges, a dual-plating flexible Zn-Br microbattery was developed using freestanding MXene films as a zinc metal free anode. The MXene anode retains no redundant Zn, as Zn from the electrolyte undergoes deposition/stripping reactions on its substrate, thereby eliminating the necessity for excess zinc.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America.
Gaucher Disease (GD) is a rare genetic disorder characterized by a deficiency in the enzyme glucocerebrosidase, leading to the accumulation of glucosylceramide in various cells, including red blood cells (RBCs). This accumulation results in altered biomechanical properties and rheological behavior of RBCs, which may play an important role in blood rheology and the development of bone infarcts, avascular necrosis (AVN) and other bone diseases associated with GD. In this study, dissipative particle dynamics (DPD) simulations are employed to investigate the biomechanics and rheology of blood and RBCs in GD under various flow conditions.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan 410083, China.
The optoelectronic properties of perovskite/two-dimensional (2D) material van der Waals heterojunctions provide greater potential for innovative neuromorphic devices. However, the traditional growth of heterojunctions still relies on strict lattice matching and high-temperature processes, which hinder high-quality interface construction and efficient carrier transport. Here, the 2D CsPbI/MoS heterojunction is realized via the van der Waals epitaxy process, overcoming lattice matching limitations.
View Article and Find Full Text PDFSci Adv
September 2025
School of Electrical and Electronic Engineering, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Brain-computer interfaces (BCIs) enable direct communication between the brain and computers. However, their long-term functionality remains limited due to signal degradation caused by acute insertion trauma, chronic foreign body reaction (FBR), and biofouling at the device-tissue interface. To address these challenges, we introduce a multifunctional surface modification strategy called targeting-specific interaction and blocking nonspecific adhesion (TAB) coating for flexible fiber, achieving a synergistic integration of mechanical compliance and biochemical stability.
View Article and Find Full Text PDFSci Adv
September 2025
State Key Laboratory of Bioinspired Interfacial Materials Science, School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China.
Acoustic transducers require films that demonstrate both toughness and fatigue resistance, presenting notable challenges when achieved through conventional nanoscale reinforcing strategies. Here, we found that the rib structure of a cicada's tymbal exhibits exceptional toughness and fatigue resistance, attributed to its unique architecture composed of alternating soft and stiff polymer layers. Inspired by this rib structure, we developed a robust artificial rib film (ARF) using a nanoconfined crystallization strategy that involves the deposition of soft polyethylene oxide and stiff phenol formaldehyde.
View Article and Find Full Text PDF