98%
921
2 minutes
20
Purpose: In a prespecified GEICAM_CIBOMA trial (NCT00130533) correlative analysis, PAM50 non-basal-like breast cancer (non-BLBC) status distinguished patients with triple-negative breast cancer (TNBC) who are most likely to benefit from adjuvant capecitabine. The standardized forkhead box C1 (FOXC1) IHC test has demonstrated strong reliability in classifying the BLBC subtype throughout TNBC cohorts. This translational analysis aimed to evaluate the prognostic/predictive significance of BLBC classification by FOXC1 IHC in the phase III GEICAM_CIBOMA clinical trial.
Experimental Design: Tumor tissues from patients with TNBC randomized to standard (neo)adjuvant chemotherapy followed by capecitabine versus observation were analyzed using the standardized FOXC1 IHC test to assess its BLBC/non-BLBC TNBC subtyping capacity as a distant relapse-free survival clinical outcome predictor of capecitabine benefit (exploratory endpoints: disease-free survival, overall survival, and recurrence-free survival).
Results: A total of 705 (80.5%) patients from the GEICAM_CIBOMA trial were evaluable for FOXC1 expression analysis, with balanced distribution between the trial's treatments. FOXC1 proportion/intensity (VFOXC1) score-based subtyping demonstrated a strong association [AUC = 0.87; 95% confidence interval (CI), 0.84-0.91] and agreement (κ index = 0.43; P < 0.0001) with PAM50 molecular subtyping. VFOXC1 non-BLBC TNBC subtype was a significant independent predictor of clinical benefit with capecitabine for distant relapse-free survival (HR, 0.44; 95% CI, 0.25-0.76; P = 0.003). This predictive effect of VFOXC1 non-BLBC on capecitabine efficacy was further confirmed at disease-free survival (HR, 0.47; 95% CI, 0.28-0.78; P = 0.003), overall survival (HR, 0.48; 95% CI, 0.24-0.96; P = 0.038), and recurrence-free survival (HR, 0.39; 95% CI, 0.22-0.72; P = 0.002).
Conclusions: This ambispective GEICAM_CIBOMA translational analysis validated FOXC1-based basal-like/non-basal-like subtyping as a pragmatic alternative to PAM50 subtyping and independently predicted the benefit of adding capecitabine to standard (neo)adjuvant chemotherapy in TNBC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12402780 | PMC |
http://dx.doi.org/10.1158/1078-0432.CCR-25-0338 | DOI Listing |
Int J Dermatol
September 2025
Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
Introduction: Cutaneous scalp metastases from breast carcinoma (CMBC) represent an uncommon manifestation of metastatic disease, with heterogeneous clinical presentations, including nodular or infiltrative lesions and scarring alopecia (alopecia neoplastica). The absence of standardized diagnostic criteria, particularly for alopecic phenotypes, poses challenges to early recognition of CMBC, which may represent either the first indication of neoplastic progression or a late recurrence.
Materials And Methods: We retrospectively analyzed a multicenter cohort of 15 patients with histologically confirmed CMBC.
Research (Wash D C)
September 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2025
Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112, Taiwan.
Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.
Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).
Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.
RSC Med Chem
August 2025
Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States of America.
A strategy for targeting tumor-associated hypoxia utilizes reductase enzyme-mediated cleavage to convert biologically inert prodrugs to their corresponding biologically active parent therapeutic agents selectively in areas of pronounced hypoxia. Small-molecule inhibitors of tubulin polymerization represent unique therapeutic agents for this approach, with the most promising functioning as both antiproliferative agents (cytotoxins) and as vascular disrupting agents (VDAs). VDAs selectively and effectively disrupt tumor-associated microvessels, which are typically fragile and chaotic in nature.
View Article and Find Full Text PDFMater Today Bio
October 2025
School of Pharmacy, Henan Medical University, Xinxiang, Henan, China.
Breast cancer continues to present a major clinical hurdle, largely attributable to its aggressive metastatic behavior and the suboptimal efficacy of standard chemotherapeutic regimens. Cisplatin (CDDP) is a representative platinum drug in the treatment of breast cancer, however, its therapeutic application is often constrained by systemic toxicity and the frequent onset of chemoresistance. Here, we introduce a novel charge-adaptive nanoprodrug system, referred to as PP@, engineered to respond to tumor-specific conditions.
View Article and Find Full Text PDF