A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

GPC2-Targeted CAR T Cells Engineered with NFAT-Inducible Membrane-Tethered IL15/IL21 Exhibit Enhanced Activity against Neuroblastoma. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neuroblastoma is a highly aggressive childhood solid tumor with poor outcomes. Chimeric antigen receptor (CAR) T cells have shown limited efficacy in neuroblastoma, with the best outcomes reported in patients with a low tumor burden, highlighting the need for further CAR optimization. One approach to addressing the high tumor burden involves engineering CAR T cells to release or express transgenic cytokines. However, its systemic toxicity remains an important therapeutic challenge. In this study, we evaluated the efficacy of IL15- and IL21-enhanced glypican 2 (GPC2)-targeted CAR T cells (GPC2-CAR T cells) in targeting high-burden neuroblastoma. Three strategies for expressing the cytokines were evaluated: constitutive secretion (GPC2-CAR + sol.IL15.IL21), constitutive membrane-tethered expression (GPC2-CAR + teth.IL15.IL21), and NFAT-inducible membrane-tethered expression (GPC2-CAR + NFAT.IL15.IL21). Engineered GPC2-CAR T cells were tested in vitro and in vivo using high neuroblastoma burden xenograft models. Additionally, single-cell RNA sequencing was used to profile the effector cells in the tumor microenvironment. All three versions of GPC2-CAR T cells significantly enhanced killing against a high neuroblastoma burden, both in vitro and in vivo, relative to control GPC2-CAR T cells. Mice treated with GPC2-CAR + NFAT.IL15.IL21 exhibited significantly lower anorexia-associated morbidity/mortality. Supporting these data, tumor-infiltrating GPC2-CAR + NFAT.IL15.IL21 developed an immunosuppressive transcriptional profile upon tumor regression, leading to prolonged survival in treated mice. In contrast, GPC2-CAR + teth.IL15.IL21 maintained a proinflammatory transcriptional signature despite near tumor clearance, resulting in hypercytokinemia and death. NFAT-inducible co-expression of tethered IL15/IL21 enhanced GPC2-CAR T-cell function against a high neuroblastoma burden with acceptable tolerability in mice. Further studies are required to validate these findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278764PMC
http://dx.doi.org/10.1158/2326-6066.CIR-24-0975DOI Listing

Publication Analysis

Top Keywords

car cells
16
gpc2-car cells
16
gpc2-car nfatil15il21
12
high neuroblastoma
12
neuroblastoma burden
12
gpc2-car
11
cells
9
gpc2-targeted car
8
nfat-inducible membrane-tethered
8
tumor burden
8

Similar Publications