Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

is a cross-kingdom pathogen. While some strains cause disseminated fusariosis and blinding corneal infections in humans, others are responsible for devastating vascular wilt diseases in plants. To better understand the distinct adaptations of to animal or plant hosts, we conducted a comparative phenotypic and genetic analysis of two strains: MRL8996 (isolated from a keratitis patient) and Fol4287 (isolated from a wilted tomato []). Infection of mouse corneas and tomato plants revealed that, while both strains cause symptoms in both hosts, MRL8996 caused more severe corneal disease in mice, whereas Fol4287 induced more pronounced wilting symptoms in tomato plants. assays using abiotic stress treatments revealed that the human pathogen MRL8996 was better adapted to elevated temperatures, whereas the plant pathogen Fol4287 was more tolerant to osmotic and cell wall stresses. Both strains displayed broad resistance to antifungal treatment, with MRL8996 exhibiting the paradoxical effect of increased tolerance to higher concentrations of the antifungal caspofungin. We identified a set of accessory chromosomes (ACs) that encode genes with different functions and have distinct transposon profiles between MRL8996 and Fol4287. Interestingly, ACs from both genomes also encode proteins with shared functions, such as chromatin remodeling and post-translational protein modifications. Our phenotypic assays and comparative genomics analyses lay the foundation for future studies correlating genotypes with phenotype and for developing targeted antifungals for agricultural and clinical uses.IMPORTANCE is a cross-kingdom fungal pathogen that infects both plants and animals. In addition to causing many devastating wilt diseases, this group of organisms was recently recognized by the World Health Organization as a high-priority threat to human health. Climate change has increased the risk of infections, as strains are highly adaptable to changing environments. Deciphering fungal adaptation mechanisms is crucial to developing appropriate control strategies. We performed a comparative analysis of strains using an animal (mouse) and plant (tomato) host and conditions that mimic abiotic stress. We also performed comparative genomics analyses to highlight the genetic differences between human and plant pathogens and correlate their phenotypic and genotypic variations. We uncovered important functional hubs shared by plant and human pathogens, such as chromatin modification, transcriptional regulation, and signal transduction, which could be used to identify novel antifungal targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345182PMC
http://dx.doi.org/10.1128/mbio.00951-25DOI Listing

Publication Analysis

Top Keywords

human plant
8
wilt diseases
8
analysis strains
8
tomato plants
8
abiotic stress
8
comparative genomics
8
genomics analyses
8
performed comparative
8
strains
7
plant
6

Similar Publications

Enantioselective Synthesis of Spirooxindole Derivatives through Lewis Acid-Catalyzed Michael Addition/Cyclization Cascade.

J Org Chem

September 2025

Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. of China.

A Mg(OTf)-catalyzed asymmetric Michael addition/cyclization cascade reaction between 3-isothiocyanato oxindoles and 2-arylidene-1,3-indanediones has been developed. This transformation provides an efficient and concise approach to biologically important bispiro[indanedione-oxindole-pyrrolidinyl]s under mild conditions in good to excellent yields (70-99% yields) with moderate to good stereoselectivities (up to 99% and >95:5 d.r.

View Article and Find Full Text PDF

Aims: The increasing antimicrobial resistance, particularly in Acinetobacter baumannii, complicates the treatment of infections, leading to higher morbidity, mortality, and economic costs. Herein, we aimed to determine the in vitro antimicrobial, synergistic, and antibiofilm activities of colistin (COL), meropenem, and ciprofloxacin antibiotics, and curcumin, punicalagin, geraniol (GER), and linalool (LIN) plant-active ingredients alone and in combination against 31 multidrug-resistant (MDR) A. baumannii clinical isolates.

View Article and Find Full Text PDF

Chromosome-scale genome assembly of Sauvagesia rhodoleuca (Ochnaceae) provides insights into its genome evolution and demographic history.

DNA Res

September 2025

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

Sauvagesia rhodoleuca is an endangered species endemic to southern China. Due to human activities, only six fragmented populations remain in Guangdong and Guangxi. Despite considerable conservation efforts, its demographic history and evolution remain poorly understood, particularly from a genomic perspective.

View Article and Find Full Text PDF

Grafting of Resveratrol-Chitosan Nanoparticles as a Promising Radiosensitizer and Protector in DMBA-Induced Breast Cancer in Mice.

Curr Cancer Drug Targets

September 2025

Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Menoufia, Egypt.

Introduction: Breast cancer is the most common malignancy among women and the second leading cause of cancer-related deaths worldwide. Resveratrol, a polyphenolic stilbene derivative found in grapes, red wine, and other plants, possesses anti-cancer properties. Various studies have reported the potential of different nanomaterials to act as radiosensitizers against tumor cells.

View Article and Find Full Text PDF

A 3D printed platform for sample treatment and detection of phytic acid in spinach leaves using a paper-based electrochemical biosensor.

Biosens Bioelectron

August 2025

Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica, 00133, Rome, Italy; SENSE4MED, via Bitonto 139, 00133, Rome, Italy. Electronic address:

Phytic acid is a phosphorylated derivative of myo-inositol that is ubiquitous in plants and serves as the primary storage form of phosphorus. In human nutrition, phytic acid is considered an anti-nutrient because it chelates essential minerals, including calcium, iron, and zinc. This binding action reduces the bioavailability of these metals, highlighting the importance of monitoring phytic acid in food.

View Article and Find Full Text PDF