98%
921
2 minutes
20
Cancer remains a leading global health challenge, necessitating the exploration of novel therapeutic strategies. Vitexin (apigenin-8-C-β-D-glucopyranoside), a natural flavonoid glycoside with a molecular weight of 432.38 g/mol, is derived from plants such as mung bean, beetroot, and hawthorn. This compound features a distinctive C-glycosidic bond at the 8-position of its apigenin backbone, contributing to its enhanced metabolic stability compared to O-glycosidic flavonoids. Preclinical studies demonstrate that vitexin modulates critical cellular processes such as cell cycle progression, apoptosis, autophagy, metastasis, angiogenesis, epigenetic modifications, and tumor glycolysis inhibition. It exerts its effects by targeting key signaling pathways, including phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and signal transducer and activator of transcription 3 (STAT3), and shows potential for combination therapies to enhance efficacy and overcome resistance. Advances in nanotechnology further enhance its bioavailability and delivery potential. This review comprehensively examines the current evidence on vitexin's anticancer mechanisms, highlighting its multi-target therapeutic potential and future research directions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192829 | PMC |
http://dx.doi.org/10.3390/ijms26125853 | DOI Listing |
Sci Prog
September 2025
Shenzhen University Sixth Affiliated Hospital, Shenzhen Nanshan People's Hospital, Shenzhen, China.
Colorectal cancer ranks among the most prevalent and lethal malignant tumors globally. Historically, the incidence of colorectal cancer in China has been lower than that in developed European and American countries; however, recent trends indicate a rising incidence due to changes in dietary patterns and lifestyle. Lipids serve critical roles in human physiology, such as energy provision, cell membrane formation, signaling molecule function, and hormone synthesis.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
Operating Room, Shanghai Tianyou Hospital, No.528, Zhennan Road, Putuo District, Shanghai, 200331, China.
Gastric cancer (GC) is a malignant tumor originating from the epithelial cells of the gastric mucosa. The 5-methylcytosine (mC) modification refers to the addition of a methyl group to the fifth carbon atom of cytosine in RNA molecules. This study aimed to investigate the role of NOL1/NOP2/SUN domain (NSUN)6 in GC and its underlying molecular mechanisms.
View Article and Find Full Text PDFMetab Brain Dis
September 2025
Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Brain ischemia is a major global cause of disability, frequently leading to psychoneurological issues. This study investigates the effects of 4-aminopyridine (4-AP) on anxiety, cognitive impairment, and potential underlying mechanisms in a mouse model of medial prefrontal cortex (mPFC) ischemia. Mice with mPFC ischemia were treated with normal saline (NS) or different doses of 4-AP (250, 500, and 1000 µg/kg) for 14 consecutive days.
View Article and Find Full Text PDFLung
September 2025
Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Introduction: Lactate has emerged as a multifunctional signaling molecule regulating various physiological and pathological processes. Furthermore, lactylation, a newly identified posttranslational modification triggered by lactate accumulation, plays significant roles in human health and diseases. This study aims to investigate the roles of lactate/lactylation in respiratory diseases.
View Article and Find Full Text PDF