Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The unique secondary messenger 2'3'-cGAMP, produced by cGAS in response to cytosolic dsDNA, plays a critical role in activating innate immunity by binding to and activating STING via cell-intrinsic, autocrine, or paracrine mechanisms. Recently, we identified Rab18 as a novel, STING-independent binder of 2'3'-cGAMP. Binding of 2'3'-cGAMP to Rab18 promotes Rab18 activation and induces cell migration. However, the downstream mechanisms by which 2'3'-cGAMP-induced Rab18 activation regulates cell migration remain largely unclear. Herein, using phospho-profiling analysis, we identify MAPK signaling as a key downstream effector of the 2'3'-cGAMP/Rab18 axis that promotes the expression of FosB2 and drives cell migration. Furthermore, we identify MMP3 as a major transcriptional target of FosB2, through which the 2'3'-cGAMP/Rab18/MAPK/FosB2 signaling pathway positively regulates cell migration. Together, our findings provide new mechanistic insights into how 2'3'-cGAMP signaling controls cell migration and suggest the potential of MAPK inhibitors to block 2'3'-cGAMP-induced migratory responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192691PMC
http://dx.doi.org/10.3390/ijms26125758DOI Listing

Publication Analysis

Top Keywords

cell migration
24
signaling pathway
8
rab18 activation
8
regulates cell
8
cell
6
migration
6
2'3'-cgamp
5
rab18/ras/erk/fosb/mmp3 signaling
4
pathway mediates
4
mediates cell
4

Similar Publications

Roles of Extracellular Superoxide Dismutase in Regulating Cell Migration and Vesicle Trafficking in Dictyostelium and Mammalian Cells.

Dev Growth Differ

September 2025

Department of Biological Sciences, College of Arts, Sciences, and Education, Florida International University, Miami, Florida, USA.

Superoxide dismutases (SODs) are key regulators of reactive oxygen species (ROS) and redox balance. Although intracellular SODs have been extensively studied, growing attention has been directed toward understanding the roles of extracellular SODs in both Dictyostelium and mammalian systems. In Dictyostelium discoideum, SodC is a glycosylphosphatidylinositol (GPI)-anchored enzyme that modulates extracellular superoxide to regulate Ras, PI3K signaling, and cytoskeletal remodeling during directional cell migration.

View Article and Find Full Text PDF

Colorectal cancer ranks among the most prevalent and lethal malignant tumors globally. Historically, the incidence of colorectal cancer in China has been lower than that in developed European and American countries; however, recent trends indicate a rising incidence due to changes in dietary patterns and lifestyle. Lipids serve critical roles in human physiology, such as energy provision, cell membrane formation, signaling molecule function, and hormone synthesis.

View Article and Find Full Text PDF

Background: Peripheral nerve injury commonly results in pain and long-term disability for patients. Recovery after in-continuity stretch or crush injury remains inherently unpredictable. However, surgical intervention yields the most favorable outcomes when performed shortly after injury.

View Article and Find Full Text PDF

Background And Aims: Liver metastasis significantly contributes to poor survival in patients with colorectal cancer (CRC), posing therapeutic challenges due to limited understanding of its mechanisms. We aimed to identify a potential target critical for CRC liver metastasis.

Methods: We analyzed the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases and identified EphrinA3 (EFNA3) as a potential clinically relevant target.

View Article and Find Full Text PDF

The oncogenic role of NSUN2 in lung adenocarcinoma by stabilizing CCT5 mRNA via a YBX1-dependent m5C modification.

Mol Cell Biochem

September 2025

Department of Laboratory Medicine, The People's Hospital of Zhongjiang, No. 96, Dabei Street, Kaijiang Town, Zhongjiang County, Deyang City, 618100, Sichuan Province, China.

5-methylcytosine (m5C) methylation is a post-transcriptional modification of RNAs, and its dysregulation plays pro-tumorigenic roles in lung adenocarcinoma (LUAD). Here, this study elucidated the mechanism of action of NSUN2, a major m5C methyltransferase, on LUAD progression. mRNA expression was analyzed by quantitative PCR.

View Article and Find Full Text PDF