98%
921
2 minutes
20
Artificial intelligence (AI) is revolutionising neuroimaging by enabling automated analysis, predictive analytics, and the discovery of biomarkers for neurological disorders. However, traditional artificial neural networks (ANNs) face challenges in processing spatiotemporal neuroimaging data due to their limited temporal memory and high computational demands. Spiking neural networks (SNNs), inspired by the brain's biological processes, offer a promising alternative. SNNs use discrete spikes for event-driven communication, making them energy-efficient and well suited for the real-time processing of dynamic brain data. Among SNN architectures, NeuCube stands out as a powerful framework for analysing spatiotemporal neuroimaging data. It employs a 3D brain-like structure to model neural activity, enabling personalised modelling, disease classification, and biomarker discovery. This paper explores the advantages of SNNs and NeuCube for multimodal neuroimaging analysis, including their ability to handle complex spatiotemporal patterns, adapt to evolving data, and provide interpretable insights. We discuss applications in disease diagnosis, brain-computer interfaces, and predictive modelling, as well as challenges such as training complexity, data encoding, and hardware limitations. Finally, we highlight future directions, including hybrid ANN-SNN models, neuromorphic hardware, and personalised medicine. Our contributions in this work are as follows: (i) we give a comprehensive review of an SNN applied to neuroimaging analysis; (ii) we present current software and hardware platforms, which have been studied in neuroscience; (iii) we provide a detailed comparison of performance and timing of SNN software simulators with a curated ADNI and other datasets; (iv) we provide a roadmap to select a hardware/software platform based on specific cases; and (v) finally, we highlight a project where NeuCube has been successfully used in neuroscience. The paper concludes with discussions of challenges and future perspectives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189790 | PMC |
http://dx.doi.org/10.3390/bioengineering12060628 | DOI Listing |
Front Comput Neurosci
August 2025
Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States.
Artificial neural networks are limited in the number of patterns that they can store and accurately recall, with capacity constraints arising from factors such as network size, architectural structure, pattern sparsity, and pattern dissimilarity. Exceeding these limits leads to recall errors, eventually leading to catastrophic forgetting, which is a major challenge in continual learning. In this study, we characterize the theoretical maximum memory capacity of single-layer feedforward networks as a function of these parameters.
View Article and Find Full Text PDFJ Biomed Opt
September 2025
Leibniz University Hannover, Hannover Centre for Optical Technologies, Hannover, Germany.
Significance: Melanoma's rising incidence demands automatable high-throughput approaches for early detection such as total body scanners, integrated with computer-aided diagnosis. High-quality input data is necessary to improve diagnostic accuracy and reliability.
Aim: This work aims to develop a high-resolution optical skin imaging module and the software for acquiring and processing raw image data into high-resolution dermoscopic images using a focus stacking approach.
J Biomed Opt
September 2025
Fraunhofer Institute for Microelectronic Circuits and Systems IMS, Duisburg, Germany.
Significance: The spatial and temporal distribution of fluorophore fractions in biological and environmental systems contains valuable information about the interactions and dynamics of these systems. To access this information, fluorophore fractions are commonly determined by means of their fluorescence emission spectrum (ES) or lifetime (LT). Combining both dimensions in temporal-spectral multiplexed data enables more accurate fraction determination while requiring advanced and fast analysis methods to handle the increased data complexity and size.
View Article and Find Full Text PDFJ Oral Biol Craniofac Res
August 2025
Neura Integrasi Solusi, Jl. Kebun Raya No. 73, Rejowinangun, Kotagede, Yogyakarta, 55171, Indonesia.
Background: Periodontal disease is an inflammatory condition causing chronic damage to the tooth-supporting connective tissues, leading to tooth loss in adults. Diagnosing periodontitis requires clinical and radiographic examinations, with panoramic radiographs crucial in identifying and assessing its severity and staging. Convolutional Neural Networks (CNNs), a deep learning method for visual data analysis, and Dense Convolutional Networks (DenseNet), which utilize direct feed-forward connections between layers, enable high-performance computer vision tasks with reduced computational demands.
View Article and Find Full Text PDFFront Genet
August 2025
Hunan Provincial Key Laboratory of Finance and Economics Big Data Science and Technology, Hunan University of Finance and Economics, Changsha, China.
RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in various biological processes, influencing RNA properties and functions. Accurate prediction of RNA ac4C sites is essential for understanding the roles of RNA molecules in gene expression and cellular regulation. While existing methods have made progress in ac4C site prediction, they still struggle with limited accuracy and generalization.
View Article and Find Full Text PDF