Integrative QTL Mapping and Transcriptomic Profiling to Identify Growth-Associated QTL and Candidate Genes in Hong Kong Catfish ().

Animals (Basel)

Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Fisheries College,

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Growth traits are critical economic characteristics in aquaculture. This study aimed to identify the candidate genes associated with the growth of by integrating QTL mapping for growth traits and the RNA-seq analysis of differentially expressed genes (DEGs) between two extreme body size groups (big-sized group and small-sized group). QTL mapping was performed on eight growth traits-body weight, body height, body length, body width, orbital diameter, caudal peduncle length, caudal peduncle height, and pre-dorsal length-using 200 individuals from a full-sibling line. Seventeen growth-related QTL were identified across eight linkage groups, explaining phenotypic variance ranging from 8.00% to 11.90%. A total of 162 functional genes were annotated within these QTL intervals. RNA-seq analysis identified 3824 DEGs between the big-sized and small-sized groups, with 2252 genes upregulated and 1572 downregulated in the big group. By integrating QTL mapping and RNA-seq data, 27 candidate genes were identified, including myostatin (), epidermal growth factor receptor (), and sarcoplasmic/endoplasmic reticulum calcium ATPase 1 (). These findings provide crucial insights into the genetic regulation of growth in and lay a foundation for future genetic selection strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189263PMC
http://dx.doi.org/10.3390/ani15121707DOI Listing

Publication Analysis

Top Keywords

qtl mapping
16
candidate genes
12
growth traits
8
integrating qtl
8
rna-seq analysis
8
caudal peduncle
8
qtl
6
genes
6
growth
6
integrative qtl
4

Similar Publications

Insulin resistance is a heritable risk factor for many chronic diseases; however, the genetic drivers remain elusive. In seeking these, we performed genetic mapping of insulin sensitivity in 670 chow-fed Diversity Outbred in Australia (DOz) mice and identified a genome-wide significant locus (QTL) on chromosome 8 encompassing 17 defensin genes. By taking a systems genetics approach, we identified alpha-defensin 26 (Defa26) as the causal gene in this region.

View Article and Find Full Text PDF

Bacterial leaf streak (BLS), caused by pv. (), has recently emerged as a significant threat to wheat production in the Northern Great Plains region of the US. Deploying resistant cultivars is an economical and practical method of controlling BLS.

View Article and Find Full Text PDF

Identification of novel QTL associated with whitebacked planthopper (WBPH) and brown planthopper (BPH) resistance in the rice line RP2068.

Gene

September 2025

Agri Biotech Foundation, Rajendranagar, Hyderabad 500 030 TS, India; Present address, Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 57922, Republic of Korea. Electronic address:

This study aimed to identify QTL governing three traits of the resistance against the two planthoppers such as damage score (DS), nymphal survival (NS) and days to wilt (DW) using the 94 RIL population derived from the cross TN1/RP2068 utilizing 125 SSR and 1500 SNP markers. In case of the whitebacked planthopper (WBPH) five major and three minor QTL while for the brown planthopper (BPH) four major and seven minor QTL were identified to be associated with these three traits. Two major QTL, each on chromosomes 1 and 2, were responsible for DS and NS against WBPH accounted for 25% and 16% of the phenotypic variance (PVE).

View Article and Find Full Text PDF

Inbred lines of , a wild relative of cultivated watermelon, are widely used as rootstocks to control soil-borne diseases for watermelon ( ) production. The most commonly used rootstock, 'Carolina strongback' (Syngenta, Basel, Switzerland) flowers weeks later than commercial watermelon cultivars, which delays the onset of female flowering (DFF) of the scion, leading to an undesirable delay in fruit maturity and harvesting. Understanding the genetics of DFF in a population will facilitate the development of rootstocks with the early flowering habits preferred for commercial production.

View Article and Find Full Text PDF

The number of thoracolumbar vertebrae (NTLV) and the number of ribs (NR) are economically important traits in pigs due to their influence on carcass length and meat yield. Although is an established key gene, it fails to fully account for population-level variation in vertebral count, necessitating a further exploration of its genetic mechanisms. Given the efficacy of crossbred populations in mapping the genetic determinants of phenotypic variation, we analyzed 439 pigs from a Landrace × Yorkshire cross.

View Article and Find Full Text PDF