98%
921
2 minutes
20
In the present study, we analysed the role played by the apoplast in the crosstalk between biotic and abiotic stress conditions. In particular, we studied the crosstalk between nitrogen (N) limitation and infection of the model plant Arabidopsis thaliana by Erwinia amylovora, an apoplastic bacterium. Our previous findings indicated that low N (LN) conditions increase E. amylovora in planta titres and expression of virulence factors. In this work, we extracted the apoplast wash fluids (AWF) from plants grown under low N or high N (HN) conditions and applied them to bacteria in vitro. We observed that LN-AWF induced stronger virulence gene expression than HN-AWF. Metabolomic analysis of both apoplast extracts revealed the presence of common metabolites; however, their proportions were distinct, indicating a direct effect of N availability on apoplast content. Interestingly, changes in the apoplast metabolite proportions were also observed early after bacterial infection, but only in plants grown under LN conditions. To evaluate the effect of single metabolites on virulence gene expression, we selected 43 metabolites and observed that 29 of them were activators, whereas two, GABA and citrate, acted as repressors. This study shows that environmental constraints, such as N availability, impact plant-pathogen interactions by altering the apoplastic content.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190549 | PMC |
http://dx.doi.org/10.1111/mpp.70110 | DOI Listing |
Mycorrhiza
September 2025
Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
Ectomycorrhizal fungi (EMF) colonize roots to establish symbiotic associations with plants. Sporocarps of the EMF Tuber spp. are considered as a delicacy in numerous countries and is a kind of EMF of great economic and social importance.
View Article and Find Full Text PDFPlanta
September 2025
Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603, Lemesos, Cyprus.
Cypriot tomato landraces exhibit partial resistance to Fusarium wilt through distinct jasmonic and salicylic acid-mediated immune responses, offering promising genetic resources for breeding durable tomato cultivars. Fusarium wilt, caused by Fusarium oxysporum f. sp.
View Article and Find Full Text PDFFunct Integr Genomics
September 2025
Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.
View Article and Find Full Text PDFmSphere
September 2025
Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.
Through horizontal gene transfer, closely related bacterial strains assimilate distinct sets of genes, resulting in significantly varied lifestyles. However, it remains unclear how strains properly regulate horizontally transferred virulence genes. We hypothesized that strains may use components of the core genome to regulate diverse horizontally acquired genes.
View Article and Find Full Text PDFPlant Cell
September 2025
Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
Communication between cellular organelles is essential for mounting effective innate immune responses. The transport of organelles to pathogen penetration sites and their assembly around the host membrane, which delineates the plant-pathogen interface, are well-documented. However, whether organelles associate with these specialized interfaces, and the extent to which this process contributes to immunity, remain unknown.
View Article and Find Full Text PDF