98%
921
2 minutes
20
Introduction: Enzymatic browning significantly affects the edible, nutritional, and commercial value of luffa. Investigating the expression and regulation of key enzyme genes involved in the browning process is crucial for understanding the molecular mechanisms underlying luffa browning.
Methods: Fruit samples were collected at 15 (S1), 20 (S2), and 45 days (S3) after flowering from two contrasting luffa varieties: the browning-sensitive Long-quan-yi (LQY) and the browning-tolerant Jiang-du (JD). RNA-sequencing technology, combined with ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS), was used to obtain transcriptome and metabolome data, which were subsequently analyzed using a series of bioinformatics approaches. Quantitative polymerase chain reaction (q-PCR) was used to validate gene expression.
Results: Compared with JD, the ROS levels and PPO activity were elevated in LQY. In the polyphenol metabolic pathway, 24 key enzyme genes including , , and , were identified. In the flavonoid metabolic pathway, 57 key structural genes, such as , , and , were identified. These genes showed different expression patterns between the two luffa varieties. Differentially expressed genes were mainly involved in the regulation of 34 MYB, 15 bHLH, 19 WD40, and 14 WRKY transcription factors. Further metabolomics analysis showed that the levels of polyphenol metabolites were upregulated in LQY, whereas the levels of flavonoid metabolites were upregulated in JD.
Discussion: This study integrated transcriptomic and metabolomics data to identify key genes, transcription factors and metabolic pathways associated with luffa browning. q-PCR analysis was performed to validate the expression of and genes. These findings provide a theoretical foundation for further investigation into the molecular mechanisms underlying luffa browning and offer potential targets for genetic improvement or breeding strategies to enhance luffa quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12186849 | PMC |
http://dx.doi.org/10.3389/fpls.2025.1530531 | DOI Listing |
J Clin Invest
September 2025
Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
Understanding the genetic causes of diseases affecting pancreatic β cells and neurons can give insights into pathways essential for both cell types. Microcephaly, epilepsy and diabetes syndrome (MEDS) is a congenital disorder with two known aetiological genes, IER3IP1 and YIPF5. Both genes encode proteins involved in endoplasmic reticulum (ER) to Golgi trafficking.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug De
Proliferative retinopathy is a leading cause of irreversible blindness in humans; however, the molecular mechanisms behind the immune cell-mediated retinal angiogenesis remain poorly elucidated. Here, using single-cell RNA sequencing in an oxygen-induced retinopathy (OIR) model, we identified an enrichment of sorting nexin (SNX)-related pathways, with SNX3, a member of the SNX family that is involved in endosomal sorting and trafficking, being significantly upregulated in the myeloid cell subpopulations of OIR retinas. Immunostaining showed that SNX3 expression is markedly increased in the retinal microglia/macrophages of mice with OIR, which is mainly located within and around the neovascular tufts.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan.
All organisms are exposed to various stressors, which can sometimes lead to organismal death, depending on their intensity. While stress-induced organismal death has been observed in many species, the underlying mechanisms remain unclear. In this study, we investigated the molecular mechanisms of stress-induced organismal death in the fruit fly .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Soft Matter Sciences and Engineering, CNRS, École supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences et Lettres, Sorbonne Université, Paris 75005, France.
The sliding motion of aqueous droplets on hydrophobic surfaces leads to charge separation at the trailing edge, with implications from triple-line friction to hydrovoltaic energy generation. Charges deposited on the solid surface have been attributed to ions or electrons ripped off from the liquid drop. However, the dynamics and exact physicochemical nature of these surface-trapped charges remains poorly explored.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202.
Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.
View Article and Find Full Text PDF