98%
921
2 minutes
20
Triclocarban (TCC) is a widely used antimicrobial agent and has been detected as an environmental contaminant in agricultural areas. We aimed to remediate TCC-contaminated agricultural runoff using a bioretention drainage ditch system augmented with biochar (BC), free cells (FC), and biochar-immobilized cells (IC). In a batch test, FC achieved the highest removal efficiency (83 %), followed by IC (62 %) and BC (58 %). In a long-term system, IC and FC exhibited comparable TCC removal efficiencies (33-35 %), whereas BC removed TCC only 20 %. The TCC reduction was achieved through biodegradation as well as adsorption by biochar and extracellular polymeric substances (EPS). The adaptive responses of the microbes to TCC toxicity included cell shrinkage and appendage formation. Comamonas and potentially Alcaligenes contributed to the TCC degradation. Azospira and Flavobacterium were likely involved in EPS production. Overall, our findings suggest that biochar-microbe-augmented bioretention drainage ditch systems hold promise for cleaning up contaminated agricultural runoff.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2025.132875 | DOI Listing |
Mar Environ Res
September 2025
College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China; Engineering Technology Research Center of Marine Ranching, Shanghai Ocean University, Shanghai, 201306, China; Comprehensive Workstation for Marine Ranching in the East China Sea Region, Expert Consul
Marine litter typically originates from human discards at sea or enters the ocean through land-based pathways such as surface runoff and natural disasters. The extensive accumulation of plastic litter poses severe threats to marine life. In August 2024, a specialized survey was conducted to investigate the distribution characteristics of marine litter and macrobenthic communities across four intertidal zones on Lvhua Island (XIAO'AO, DA'AO, FANGANG, and SHIZIKENG).
View Article and Find Full Text PDFIntegr Environ Assess Manag
September 2025
Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
Pesticides are widely used to meet the food demands of a growing population, with various types used to control pests depending on the crops grown. Rainfall, overspray, and runoff from agricultural fields can wash these insecticides into water bodies, posing documented environmental risks. Imidacloprid is commonly used in Afrotropical regions such as South Africa, yet limited information is available on its toxicity to aquatic ecosystems within this climate region.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
The accumulation of nitrate (NO) from agricultural runoff poses a growing threat to ecosystems and public health. Converting nitrate into ammonia (NH) through the electrochemical nitrate reduction reaction (NORR) offers a promising strategy to mitigate environmental contamination while creating a sustainable circular route to fertilizer production. However, achieving high NH production and energy efficiency remains challenging.
View Article and Find Full Text PDFExp Parasitol
September 2025
Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia.
Excessive use of agrochemicals results in contamination of water due to runoff or leaching. Insecticide induced-hormesis, a phenomenon characterized by low dose stimulation following exposure to insecticide, is crucial to insect pest resurgence. In this study, the effects of low or sublethal concentrations of emamectin benzoate and thiamethoxam on biological traits and genes expression were investigated for yellow fever mosquito, Aedes aegypti following 48 h exposures.
View Article and Find Full Text PDFJ Environ Manage
September 2025
College of Water Resources and Architectural Engineering at Northwest Agriculture and Forestry University/Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas at Ministry of Education, Yangling, Shaanxi, 712100, PR China; Academy of Plateau Science and Sustainability,
Alpine ecosystems are critical for water regulation but highly sensitive to climate change. In the Three-River Source Region (TRSR) of the Qinghai-Tibet Plateau, changes in temperature, precipitation, and large-scale ecological restoration have significantly altered vegetation phenology-including the start (SOS), end (EOS), and length (LOS) of the growing season, as well as vegetation growth status (GS). These shifts affect hydrological processes such as evapotranspiration, soil moisture, snowmelt, and runoff.
View Article and Find Full Text PDF