98%
921
2 minutes
20
Background: The human body can spontaneously repair damaged bone tissue and cells; however, external interventions are required to support bone regeneration when the defect exceeds a critical threshold. Bone repair primarily involves the regeneration of both bone and cartilage defects. Natural polyphenols, characterized by polyphenolic hydroxyl structures, readily integrate with other biomaterials to modulate endogenous microenvironment regulation and enhance bone defect repair.
Aim Of Review: In this review, we first examine the various sources of natural polyphenols and subsequently discuss their applications in bone and cartilage repair. We then summarize the iterative updates that have evolved through technological innovations, including bone grafting, tissue engineering, and organoids, as well as preclinical and clinical examples of osteogenic systemic therapies. In addition, it highlights the potential of integrating polyphenols into current regenerative medicine technologies.
Key Scientific Concepts Of Review: The development of polyphenol-based osteogenic systems has progressed into a new phase, characterized by highly integrated and multicomponent functionality. These systems offer simple and effective strategies for solving various bone defect conditions. However, standardized procedures are still needed to successfully translate polyphenol osteogenic systems into the clinic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jare.2025.06.067 | DOI Listing |
ACS Synth Biol
September 2025
The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China.
Human Bone Morphogenetic Protein-2 (hBMP-2) serves as a critical regulator in bone and cartilage formation; however, its industrial application is hindered by its inherent tendency to form inclusion bodies in prokaryotic expression systems. To address this issue, we established a recombinant hBMP-2 (rhBMP-2) expression system using the pCold II plasmid and the SHuffle T7 strain. We explored several strategies to enhance the solubility of rhBMP-2, including coexpression with molecular chaperones, vesicle-mediated secretory expression, fusion expression with synthetic intrinsically disordered proteins (SynIDPs), and fusion expression with small-molecule peptide tags.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
September 2025
Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India. Electronic address:
Excessive fluoride (F) exposure, particularly during early development, poses a significant risk to skeletal integrity by disrupting bone homeostasis through oxidative stress and altered mineralization. While F induced oxidative stress is well documented, studies investigating the role of natural antioxidants in mitigating F induced osteochondral toxicity remains limited. Hence, the present study investigated the osteomodulatory effect of fisetin (Fis) against F toxicity in zebrafish larvae.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University; Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences;
Post-traumatic osteoarthritis (PTOA) is a degenerative joint disease triggered by trauma or intense mechanical stress, leading to joint cartilage degeneration and functional impairment. Prostaglandin E2 (PGE2) contributes significantly to cartilage degradation following mechanical injury by activating its receptor, Prostaglandin E receptor 4 (EP4), on chondrocyte membranes. The homeostasis of articular cartilage primarily relies on the dynamic balance between cartilage degradation and repair, a process finely regulated by chondrocytes.
View Article and Find Full Text PDFFront Oncol
August 2025
Department of Orthopaedics, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
Objective: To comprehensively examine the incidence and mortality of malignant neoplasms of bone and articular cartilage (MNBAC) in China compared with the world, as well as its age-specific patterns and sex disparities.
Methods: The MNBAC burden in China and the world was systematically assessed from 1990 to 2021 based on the Global Burden of Disease 2021, including incidence and mortality data. The estimated annual percentage change was calculated.
Osteoarthr Cartil Open
December 2025
Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China.
Objective: We developed and validated an artificial intelligence pipeline that leverages diffusion models to enhance prognostic assessment of knee osteoarthritis (OA) by analyzing longitudinal changes in patella shape on lateral knee radiographs.
Method: In this retrospective study of 2,913 participants from the Multicenter Osteoarthritis Study, left-knee weight-bearing lateral radiographs obtained at baseline and 60 months were analyzed. Our pipeline commences with an automatic segmentation for patella shapes, followed by a diffusion model to predict patella shape trajectories over 60 months.