98%
921
2 minutes
20
Background: Recently, research interest in attention deficit hyperactivity disorder (ADHD) has grown significantly, driven by its increasing incidence and substantial societal impact. Among the various pathogenic mechanisms under investigation, the microbiota-gut-brain axis has emerged as a crucial area of focus. In the context of ADHD treatment, Xiaoer Huanglong Pellets (XRHLP), a traditional Chinese herbal formulation, have demonstrated therapeutic efficacy, although the underlying mechanisms remain partially understood.
Purpose: This study aimed to analyze and compare the therapeutic effects and underlying mechanisms of XRHLP, including gastric release (WR_HL), enteric release (CR_HL), and colon release (JCR_HL) pellets, for ADHD treatment.
Methods: This study employed a multi-modal approach to investigate the effects of XRHLP on ADHD. Behavioral assessments combined with Enzyme-linked immunosorbent assay and Western-blot analyses were conducted to evaluate the therapeutic outcomes in model rats with ADHD. Comprehensive profiling of the gut-brain axis was performed using 16S ribosomal RNA sequencing and untargeted and targeted metabolomic analyses. The causal role of the gut microbiota was further validated using fecal microbiota transplantation (FMT).
Results: WR_HL, CR_HL, and JCR_HL improved ADHD-like behaviors and neurotransmission dysfunction, with JCR_HL exhibiting superior intervention effects compared to WR_HL and CR_HL. These therapeutic effects are mediated through multiple pathways, including the restoration of gut microbial homeostasis, attenuation of inflammatory cascades, and repair of compromised intestinal and blood-brain barrier. The intervention also corrected systemic metabolic imbalances by specifically addressing the abnormalities in amino acid metabolism, neurotransmitter regulation, and short-chain fatty acid production. FMT experiments further confirmed the critical role of microbial modulation in mediating the behavioral and microbial regulatory effects of XRHLP.
Conclusion: In summary, XRHLP exerts anti-ADHD effects by improving the microbiota-gut-brain axis and correcting amino acid metabolic disorders, providing new insights into the molecular mechanisms by which traditional Chinese medicine influences ADHD and offers potential avenues for drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2025.157007 | DOI Listing |
J Agric Food Chem
September 2025
Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.
View Article and Find Full Text PDFEnviron Res
September 2025
Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, Barcelona, 08017, Spain. Electronic address:
Glyphosate (GLY) is the most widely used herbicide globally and is frequently detected in aquatic environments at low concentrations, raising concerns about its potential long-term effects on non-target organisms. However, the systemic metabolic disruptions of chronic GLY exposure in aquatic vertebrates remain poorly understood, especially at environmentally relevant concentrations. This study investigates the metabolic disruptions of GLY exposure in zebrafish (D.
View Article and Find Full Text PDFJ Integr Neurosci
August 2025
Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada.
There is a growing body of evidence that the interaction between various microbial organisms and the human host can affect various physical and even mental health conditions. Bidirectional communication occurs between the brain and the gut microbiome, referred to as the brain-gut-microbiome axis. During aging, changes occur to the gut microbiome due to various events and factors such as the mode of delivery at birth, exposure to medications (e.
View Article and Find Full Text PDFFront Microbiol
August 2025
State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
Autism spectrum disorders (ASD), a group of neurodevelopmental disorders characterized by the core symptoms of impaired social communication and stereotyped behaviors, is strongly associated with dysregulated microbiota-gut-brain axis. Emerging evidence suggests that , which showed reduced abundance in ASD cohorts, holds therapeutic potential, though its interaction with host remain unexplored. Here, we investigated the efficacy and molecular basis of 4P-15 (4P-15) in BTBR /J (BTBR) mice, an idiopathic ASD mouse model.
View Article and Find Full Text PDFFront Microbiol
August 2025
Emergency Department, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China.
Introduction: Acute stroke (AS) is a major public health issue globally, exhibiting high morbidity, disability rate, and mortality. Emerging research has demonstrated the critical roles of gut microbiota and its metabolites in pathogenesis, recovery, and prognosis of AS.
Methods: In this study, we investigated alterations in gut microbiota composition and metabolomic profiles in AS patients using 16S rRNA sequencing and untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics technology.