A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Metal-Polyphenol Network Coated Bilirubin Nanoparticles for the Alleviation of Periodontitis via Mild Photothermal Therapy and Immunomodulatory Therapy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

At present, the development of nanoplatforms that integrate infection control, inflammation resolution, and tissue repair for the treatment of periodontitis remains an enormous challenge. Based on the intricate pathogenesis of periodontitis and the advantages of mild photothermal therapy (PTT) and nanotherapy, a multifunctional photothermal nanoplatform (designated BR@C3G-Cu) was rationally developed by coating bilirubin nanoparticles (BR NPs) with copper ion coordinated cyanidin-3--glucoside metal-polyphenol networks (MPNs) in this study. The synergistic consequences of the photothermal conversion properties and metal-dependent functionality of this MPNs contributed to the effective and persistent elimination of periodontal pathogens under safe and mild conditions, meeting the heterogeneous antibacterial requirements of periodontitis. Further, photothermal BR@C3G-Cu NPs restored the macrophage polarization balance and mitigated periodontal inflammation by countering oxidative stress damage and blocking the cGAS-STING pathway, thereby normalizing the periodontal local osteoimmune microenvironment and promoting the osteogenic differentiation of stem cells. BR@C3G-Cu NPs exposed to near-infrared irradiation also offered beneficial therapeutic outcomes in a mouse periodontitis model, including inhibiting alveolar bone resorption and promoting periodontal tissue remodeling. Overall, this work highlights the potential of MPN-coated engineered NPs (i.e., BR@C3G-Cu) for the treatment of periodontitis through the integration of mild PTT and immunomodulatory therapy to eliminate pathogenic bacteria, alleviate inflammation, and promote regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5c05266DOI Listing

Publication Analysis

Top Keywords

bilirubin nanoparticles
8
mild photothermal
8
photothermal therapy
8
immunomodulatory therapy
8
treatment periodontitis
8
br@c3g-cu nps
8
periodontitis
6
photothermal
5
metal-polyphenol network
4
network coated
4

Similar Publications