98%
921
2 minutes
20
Soil salinity threatens global food security, making salt tolerance a key agronomic trait. Quinoa ( Willd.), a halophytic pseudo-cereal known for its high nutritional value, emerges as a promising candidate due to its inherent resilience to saline conditions. Although quinoa's physiological and morphological adaptations to salinity are documented, the role of native fungal endophytes in enhancing salinity tolerance remains largely unexplored, particularly across diverse genotypes. This study investigates the contributions of quinoa-associated endophytes to salinity tolerance and seed quality in different genotypes, thus contributing to understand ecological interactions bolstering crop resilience. To achieve this objective, five quinoa genotypes were selected based on their distribution along a 2,200 km latitudinal gradient (19°-39° S), representing a range of ecological niches. Plants with (E) and without (E) fungal endophytes were subjected to salinity treatments of 0, 200, and 400 mM NaCl. Salinity tolerance was assessed through photochemical efficiency, gene expression analysis of CNHX1, and plant survival rates. Seed quality was evaluated by measuring seed weight and protein content, providing a comprehensive assessment of the endophytes' impact on quinoa under stress conditions. Our results reveal that native microbiomes significantly enhanced salinity tolerance and seed quality in a genotype-dependent manner. Notably, E plants demonstrated improved photochemical efficiency and higher expression levels of CNHX1 under high salinity conditions, with survival rates increasing by up to 30% compared to E plants. Seed weight and protein content were also positively affected, with E plants showing up to a 25% increase in protein content under 400 mM NaCl stress. Remarkably, E plants exhibited no negative effects under non-saline conditions. These findings suggest that fungal endophytes interactions shift from neutral to beneficial under salinity, with no trade-offs under normal conditions. This highlights the potential role of endophytes in enhancing quinoa resilience and nutritional value, reinforcing their importance for crop adaptation in the face of climate change. Future research should explore the molecular mechanisms underlying these beneficial interactions and assess their applicability to other crops, paving the way for innovative strategies in plant breeding and conservation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183269 | PMC |
http://dx.doi.org/10.3389/fpls.2025.1602553 | DOI Listing |
Appl Microbiol Biotechnol
September 2025
School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.
Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.
View Article and Find Full Text PDFCurr Genet
September 2025
Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, 180001, India.
Trichoderma species exhibit remarkable versatility in adaptability and in occupying habitats with lifestyles ranging from mycoparasitism and saprotrophy to endophytism. In this study, we present the first high-quality whole-genome assembly and annotation of T. lixii using Illumina HiSeq technology to explore the mechanisms of endophytic lifestyle and plant colonization.
View Article and Find Full Text PDFChem Biodivers
September 2025
Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India.
Argemone mexicana is one of the known herbaceous plants hosting bioactive isoquinoline alkaloids. In the current study, an endophytic fungal isolate was studied for anti-inflammatory potential and the identification of its bioactive molecule. An endophytic fungus AMEF-14 was obtained from this plant and identified as Cladosporium ramotenellum based on microscopy and molecular tools.
View Article and Find Full Text PDFArch Microbiol
September 2025
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
Endophytic fungi are nonpathogenic fungi that live symbiotically in the interior of healthy plant tissues and form mutualistic associations with their hosts. These fungi are critically involved in promoting plant development, strengthening plant uptake of nutrients, and improving plant resistance to biotic and abiotic stress conditions. Endophytic fungi improve plant growth by synthesizing phytohormones (e.
View Article and Find Full Text PDFRev Argent Microbiol
September 2025
IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, Camino a la Presa San José 2055, Col. Lomas 4 Sección, 78216 San Luis Potosí, SLP, Mexico.
Fungal diseases in agricultural crops cause economic losses, with chemical control being the conventional method to manage them. However, this approach negatively impacts both the environment and human health. This study focused on endophytic fungi isolated from the roots of Ceratozamia mirandae in the Mexican locality of Juan Sabines (Villa Corzo, Chiapas).
View Article and Find Full Text PDF