98%
921
2 minutes
20
Live-cell imaging is an evolving and somewhat challenging method to study keratinocyte behavior in vitro. Historically, keratinocyte division behavior was investigated via methods such as clonal analysis, immunostaining, and cell cycle analysis. None of these methods allow for the analysis of keratinocyte behavior at the single-cell level in real time. Over the past decade, groups have utilized live cell imaging to identify keratinocyte stem cells and committed progenitors without the need for labeling. Differences have been identified in each respective group's division behavior, rate of terminal differentiation, and cell cycle duration. Here, a method for keratinocyte live cell imaging with time-lapse photography and its analysis is described. Utilizing unpassaged keratinocytes is recommended for this method to most closely mimic in vivo behavior. Live cell imaging provides a unique ability to study stem cell and committed progenitor behavior at the single cell level and to determine division fates, cell cycle duration, as well as other proliferation metrics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/67855 | DOI Listing |
Objective: .Aim: To investigate the pathomorphological changes in the terminal chorionic villi during COVID-19 in pregnant women.
Patients And Methods: Materials and Methods: A total of 123 placentas were studied in cases of live term births (groups І) and antenatal asphyxia (groups ІІ).
Mol Biol Cell
September 2025
Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
During embryonic development, neural crest-derived melanoblasts, which are precursors of pigment-producing melanocytes, disperse throughout the skin by long-range cell migration that requires adhesion to the ECM. Members of the integrin family of cell-ECM adhesion receptors are thought to contribute to melanocyte migration . However, due to the functional redundancy between different integrin heterodimers, the precise role of integrins in melanoblast migration, as well as the mechanisms that regulate them in this process, especially in contexts, remain poorly understood.
View Article and Find Full Text PDFMol Biol Cell
September 2025
Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, USA.
Cardiac sarcomere assembly is a highly orchestrated process requiring integration between intracellular contractile machinery and extracellular adhesions. While α-actinin-2 (ACTN2) is well known for its structural role at the cardiac Z-disc, the sarcomere border, the function of the "non-muscle" paralog α-actinin-1 (ACTN1) in cardiac myocytes remains unclear. Using human induced pluripotent stem cell-derived cardiac myocytes (hiCMs), we demonstrate that siRNA-mediated depletion of ACTN1 disrupts sarcomere assembly, and that exogenous re-introduction of ACTN1 but not ACTN2 restores assembly, revealing non-redundant functions.
View Article and Find Full Text PDFMol Biol Cell
September 2025
Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
The ESCRT machinery mediates membrane remodeling in fundamental cellular processes including cytokinesis, endosomal sorting, nuclear envelope reformation, and membrane repair. Membrane constriction and scission is driven by the filament-forming ESCRT-III complex and the AAA-ATPase VPS4. While ESCRT-III-driven membrane scission is generally established, the mechanisms governing the assembly and coordination of its twelve mammalian isoforms in cells remain poorly understood.
View Article and Find Full Text PDFNanoscale
September 2025
Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
Correction for 'Distinct autophagy-inducing abilities of similar-sized nanoparticles in cell culture and live ' by Qin Wang , , 2018, , 23059-23069, https://doi.org/10.1039/C8NR05851B.
View Article and Find Full Text PDF