98%
921
2 minutes
20
This study explores three binary natural hydrophobic deep eutectic solvents (HDESs) for capturing carbon dioxide (CO) and nitrogen (N) at high pressures. The HDES systems, comprising linoleic acid (LnA) as a hydrogen-bond donor (HBD) and camphor (CAM), citral (CIT), or piperitone (PIP) as a hydrogen-bond acceptor (HBA), were synthesized and characterized for density, viscosity, conductivity, surface tension, and contact angle. High-pressure gas absorption experiments demonstrated CO and N capture, achieving absorption rates of ∼62%-92% within 100 s at 10-30 bar. At 25 bar, a mole fraction absorption of 0.47 matched the performance of aqueous monoethanolamine (MEA) at 25 °C. Among the HDESs, CAM-LnA (1:1) exhibited the highest CO selectivity at 2.5 and 5 bar, with values of 41.4 and 44.2, respectively. The conductor-like screening model for real solvents (COSMO-RSs) method predicted eutectic points and gas absorption, while molecular dynamics simulations assessed gas interactions at the molecular level. The results underscore the potential of HDES for high-pressure gas capture, providing insights into their production, characterization, and applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177657 | PMC |
http://dx.doi.org/10.1021/acsomega.5c01533 | DOI Listing |
J Sci Food Agric
September 2025
College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.
Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.
View Article and Find Full Text PDFNat Chem Biol
September 2025
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
Many pharmaceutical targets partition into biomolecular condensates, whose microenvironments can significantly influence drug distribution. Nevertheless, it is unclear how drug design principles should adjust for these targets to optimize target engagement. To address this question, we systematically investigated how condensate microenvironments influence drug-targeting efficiency.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),
Hypothesis: Gas hydrate formation in sediments is influenced by the availability of gas-water interfacial areas, which governs gas-water interactions. The surface wettability of sediment particles is expected to affect the spatial distribution of water within the pore space, thereby altering the extent of gas-liquid contact. Consequently, by tuning the wettability heterogeneity of the sediment, the spatial distribution of pore water can be regulated, which in turn influences the gas-water interactions and the kinetics of gas hydrate formation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Soft Matter Sciences and Engineering, CNRS, École supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences et Lettres, Sorbonne Université, Paris 75005, France.
The sliding motion of aqueous droplets on hydrophobic surfaces leads to charge separation at the trailing edge, with implications from triple-line friction to hydrovoltaic energy generation. Charges deposited on the solid surface have been attributed to ions or electrons ripped off from the liquid drop. However, the dynamics and exact physicochemical nature of these surface-trapped charges remains poorly explored.
View Article and Find Full Text PDFBiomacromolecules
September 2025
Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.
View Article and Find Full Text PDF