Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Depression is highly recurrent, and predicting relapses in a timely manner is critical. We applied machine learning to predict the worsening of depressive symptoms.

Methods: We conducted a 52-week cohort study of patients with recurrent depression on maintenance pharmacotherapy, using a smartphone app and a wearable device. Participants reported their depression level by filling in the Kessler Psychological Distress Scale (K6) every week on the app. We first classified participants based on their lifestyle characteristics. We then applied the leave-one-participant-out cross-validated (LOOCV) XGBoost to predict K6 scores. We also simulated how the model can perform, where the data of a new patient is collected for some time and then added to the existing dataset to predict the new patient's symptom worsening in the future.

Results: We analyzed the data from 89 participants (49 males; median age, 44 years). We identified two distinct clusters of participants: participants in Cluster 1 had unstable sleep patterns and spent more time indoors, whereas those in Cluster 2 spent more time working/studying. The straightforward LOOCV performance showed good AUC but low kappa. When we added observations of a new patient for three months, the weighted kappa between the predicted and the observed K6 classes improved to 0.68 (95 % confidence interval: 0.55-0.81) for Cluster 1 and 0.59 (0.48-0.70) for Cluster 2.

Conclusions: Subtyping patients by their behavioral patterns and applying machine learning allowed us to build prediction models for depression relapses among patients on maintenance pharmacotherapy.

Funding: Shionogi & Co., Ltd.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2025.119703DOI Listing

Publication Analysis

Top Keywords

machine learning
12
symptom worsening
8
depression maintenance
8
maintenance pharmacotherapy
8
spent time
8
depression
5
participants
5
predicting symptom
4
worsening remitted
4
remitted depression
4

Similar Publications

Aims And Objective: The field of medical statistics has experienced significant advancements driven by integrating innovative statistical methodologies. This study aims to conduct a comprehensive analysis to explore current trends, influential research areas, and future directions in medical statistics.

Methods: This paper maps the evolution of statistical methods used in medical research based on 4,919 relevant publications retrieved from the Web of Science.

View Article and Find Full Text PDF

Background: Cerebrovascular reactivity reflects changes in cerebral blood flow in response to an acute stimulus and is reflective of the brain's ability to match blood flow to demand. Functional MRI with a breath-hold task can be used to elicit this vasoactive response, but data validity hinges on subject compliance. Determining breath-hold compliance often requires external monitoring equipment.

View Article and Find Full Text PDF

Objectives: Non-small cell lung cancer (NSCLC) is associated with poor prognosis, with 30% of patients diagnosed at an advanced stage. Mutations in the and genes are important prognostic factors for NSCLC, and targeted therapies can significantly improve survival in these patients. Although tissue biopsy remains the gold standard for detecting gene mutations, it has limitations, including invasiveness, sampling errors due to tumor heterogeneity, and poor reproducibility.

View Article and Find Full Text PDF

Artificial Intelligence in Contact Dermatitis: Current and Future Perspectives.

Dermatitis

September 2025

From the Department of Dermatology, Venereology and Leprology, All India Institute of Medical Sciences (AIIMS), Bhopal, India.

Contact dermatitis (CD), which includes both allergic CD and irritant CD, is a common inflammatory condition that can pose significant diagnostic challenges. Although patch testing is the gold standard for identifying causative allergens for allergic contact dermatitis (ACD), it is time-consuming, subjective, and requires expert interpretation. Recent advancements in artificial intelligence (AI), particularly in machine learning (ML) and deep learning, have shown promise in improving the accuracy, efficiency, and accessibility of CD diagnosis and management.

View Article and Find Full Text PDF