Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Sensitive and cost-effective detection methods utilizing portable equipment are crucial for applications in food safety inspection, environmental monitoring, and clinical diagnosis. In this study, we propose a sliced inference-assisted lightweight small object detection model (SIALSO) holographic biosensor for digital immunoassay-based quantification of chloramphenicol in food samples. This innovative biosensor combines a lens-free holographic imaging system with a lightweight deep learning model, capitalizing on the extensive field of view (FOV) of holography to facilitate precise signal detection of microsphere probes. The SIALSO model integrates a sliced inference-assisted algorithm to improve small object detection accuracy while minimizing computational complexity. Experimental results reveal that the SIALSO biosensor achieves a linear detection range from 50 pg/mL to 100 ng/mL ( = 0.986), outperforming ELISA in both sensitivity and detection range. Furthermore, the model reduces computational parameters by 29% compared to YOLOv5s while maintaining high precision (98.2%) and recall (95.7%). This research establishes a robust theoretical and technological foundation for the development of portable detection devices in food safety and environmental monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.5c02441 | DOI Listing |