98%
921
2 minutes
20
Purpose: To evaluate the impact of different complete-arch digital scanning techniques on the passive fit of computer-aided design and computer-aided manufacturing (CAD-CAM) verification devices.
Materials And Methods: A mandibular master cast with four multiunit abutment implant analogs was used as the basis for fabricating verification devices through three impression techniques. Group 1 employed a conventional open-tray impression technique using polyvinyl siloxane material, Group 2 utilized digital scans of splinted scanbodies reinforced with a light-polymerizing acrylic resin and metal mesh, and Group 3 applied digital scans of reverse scanbodies connected to a passively fitting interim prosthesis. A total of 60 CAD-CAM verification devices were fabricated, including 10 milled and 10 3D-printed devices across the three groups. The misfit of verification devices was assessed using visual inspection, tactile sensation, and a one-screw test, with any disagreements between the two primary examiners resolved by a third evaluator. Agreement between the clinicians was assessed using crosstabs, kappa statistics, and percent agreement separately for the visual and tactile evaluations. The percentage of misfits was calculated for each group and compared between groups using Fisher's exact tests (α = 0.05).
Results: Milled verification devices exhibited superior passive fit compared to 3D-printed devices across all groups. The Group 1 conventional open-tray technique with milled devices achieved a misfit percentage of 0%, significantly outperforming other groups. Group 3 reverse scanbodies with milled devices followed with a 20% misfit rate, while Group 2 splinted scanbodies with auxiliary features and milled devices showed the highest misfit rate at 60%. Among 3D-printed devices, Group 1 had the lowest misfit rate at 50%, followed by Group 3 at 60%, and Group 2 at 80%. The agreement between examiners was substantial, with a kappa statistic of 0.77 and 88% consistency. Statistical analysis revealed significant differences in misfit rates, highlighting the advantages of conventional methods and milled devices in achieving superior fit.
Conclusion: The conventional splinted open-tray impression technique, combined with milled verification devices, demonstrated superior fit and outperformed other impression and manufacturing techniques. The reverse scanbody protocol performed better than splinted scanbodies with auxiliary features, although it still showed variability. Conversely, 3D-printed verification devices demonstrated higher misfit rates, limiting their clinical applicability for verifying implant positions in complete-arch prostheses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378977 | PMC |
http://dx.doi.org/10.1111/jopr.14084 | DOI Listing |
Ann Biomed Eng
September 2025
Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Purpose: Replicating spinal cord injury (SCI) in large animals is necessary for evaluating translational therapeutics, yet there is currently no commercial, standardized device for inducing SCI. We present the fabrication and testing of a custom impactor device for producing repeatable contusion SCI in porcine models.
Methods: The device was built, and mechanical modeling was utilized for calibration.
Microsyst Nanoeng
September 2025
School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China.
Tactile sensors are crucial in robotics and medical diagnostics, requiring precise real-time detection. However, the development of a compact sensor that can measure force across a wide range, with high resolution and rapid response along three axes, remains extremely limited. Herein, an opto-electro-mechanical tactile sensor is reported, utilizing a monolithically integrated GaN-based optochip with a fingerprint-patterned polydimethylsiloxane (PDMS) film.
View Article and Find Full Text PDFMed Phys
September 2025
Heidelberg Institute for Radiation Oncology (HIRO), National Center for Research in Radiation Oncology (NCRO), Heidelberg, Germany.
Background: As advanced treatment plans increasingly include optimizing both dose and linear energy transfer (LET), there is a growing demand for tools to measure LET in clinical settings. Although various detection systems have been investigated in this pursuit, the scarcity of detectors capable of providing per-ion data for a fast and streamlined verification of LET distributions remains an issue. Silicon pixel detector technology bridges this gap by enabling rapid tracking of single-ion energy deposition.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan.
Understanding anisotropic charge transport in molecular semiconductors is crucial for device optimization, yet its intricate dependence on orbital-specific intermolecular interactions and molecular packing remains a challenge, especially in ambipolar systems. In ambipolar semiconductors, where both holes and electrons participate in conduction, distinct molecular orbitals prompt a critical inquiry: can orbital variations result in coexisting yet distinct anisotropic transport properties within a single component? We confirm this possibility by demonstrating that the air-stable nickel dithiolene, Ni(4OPr), exhibits such behavior. Despite its herringbone stacking implying a two-dimensional electronic structure, Ni(4OPr) uniquely exhibits distinct intermolecular interactions for hole (HOMO-to-HOMO; HOMO = highest occupied molecular orbital) and electron (LUMO-to-LUMO; LUMO = lowest unoccupied molecular orbital) transport.
View Article and Find Full Text PDFJ Appl Clin Med Phys
September 2025
Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu, India.
Background And Purpose: Reducing the dose rate enhances efficacy in radiation therapy by allowing increased repair of sub-lethal damage. Pulsed low-dose radiation therapy (PLDR) is an innovative approach that is safe and effective for the reirradiation of recurrent gliomas and radioresistant tumors. In this study, the accuracy of the low dose rate volumetric modulated arc therapy (VMAT) delivery is tested in an Elekta Versa HD linear accelerator (linac) for delivering PLDR.
View Article and Find Full Text PDF