Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Regulating uniformity and stability of substrates remains a key challenge in developments of flexible surface enhanced Raman spectroscopy (SERS) sensors. Herein, we fabricated a flexible SERS platform by integrating ultra-stable nitrogen-doped graphite-coated gold nanoparticles (Au@NG) with a polydimethylsiloxane (PDMS) film via optimized microarray spray-coating techniques, forming a composite substrate denoted as Au@NG@PDMS. The structure and chemical stability of the Au@NG nanoparticles were confirmed by TEM and Raman spectroscopy. The presence of a thin, nitrogen-doped graphite shell effectively protected the Au core against acidic, alkaline, and oxidative environments. Benefiting from the superior mechanical flexibility of PDMS, the Au@NG@PDMS substrate maintained excellent SERS signal reproducibility under repeated bending and stretching cycles. Furthermore, we demonstrated that adjusting the solvent evaporation rate by selecting solvents in spraying process significantly improved the uniformity, reproducibility, and overall SERS performance of the substrate. Using this platform, we achieved highly sensitive and quantitative detection of crystal violet across a concentration range from 10 nM to 10 µM and successfully identified trace levels (20 ng/mL) of thiram residues directly on the surface of apples. The resulting flexible SERS substrate exhibits outstanding structural stability, signal uniformity, and surface conformability making it highly promising for practical applications in on-site pesticide residue detection in agricultural monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202500405 | DOI Listing |