Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polyelectrolytes (PEs) provide a versatile material system for improving the efficiency and stability of triboelectric nanogenerators (TENGs). Compared to conventional ionic liquids (ILs), which suffer from leakage, environmental instability, and limited durability, PEs feature covalently tethered ionic groups that enable precise tribopolarity control while preventing unwanted ion migration. By systematically varying polymer backbones and ionic compositions, including two polycations and three polyanions, tunable triboelectric behavior is demonstrated using Kelvin Probe Force Microscopy, time-of-flight secondary ion mass spectrometry, and TENG output measurements. The polymethyl acrylate (PMA)-based polycation with 20% ion inclusion shows strongly tribopositive behavior, producing 83 V compared to 45 V for PMA. The polystyrene (PS)-based polyanion with 10% ion inclusion exhibits strongly tribonegative behavior with 34 V, compared to 8 V for PS. Optimizing ion ratios enhances charge retention by suppressing excessive ionic conduction. The mechanical and thermal stability of PEs is demonstrated by output measurements over time; for example, the short-circuit current of PMA-based polycation with 20% ion inclusion remains nearly unchanged after 1 week at 60 °C, in contrast to an ≈27% drop observed in a polymer-IL system (poly(methyl methacrylate) with 10 wt% IL). These findings highlight the suitability of PEs as a robust, stable, and tunable platform for next-generation energy-harvesting applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202505547DOI Listing

Publication Analysis

Top Keywords

ion inclusion
12
stable tunable
8
tunable platform
8
triboelectric nanogenerators
8
output measurements
8
pma-based polycation
8
polycation 20%
8
20% ion
8
ion
6
polyelectrolytes stable
4

Similar Publications

Balanced biocompatibility in high-viscosity hydroxypropyl methylcellulose-based sponge containing nanoconfined silver citrate nanoparticles.

Int J Biol Macromol

September 2025

Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, PR China. Electronic address:

Balancing antibacterial efficacy, mechanical integrity, and biocompatibility remains a critical challenge in drug release systems for wound dressings. Many antimicrobial agents exhibit inherent cytotoxicity, compromising cell viability and tissue compatibility. To address this, an Absorbable Gelatine Sponge was synthetised based on high-viscosity hydroxypropyl methylcellulose (HPMC K100M) and loaded with silver citrate nanorods (AgCit), which confine silver nanoparticles to enable controlled ion release.

View Article and Find Full Text PDF

Observation of Three Resonant Structures in the Cross Section of e^{+}e^{-}→π^{+}π^{-}h_{c}.

Phys Rev Lett

August 2025

State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People's Republic of China.

Using e^{+}e^{-} collision data collected with the BESIII detector operating at the Beijing electron positron collider, the cross section of e^{+}e^{-}→π^{+}π^{-}h_{c} is measured at 59 points with center-of-mass energy sqrt[s] ranging from 4.009 to 4.950 GeV with a total integrated luminosity of 22.

View Article and Find Full Text PDF

Background: Bacillus thuringiensis Cry toxins are well known for their insecticidal properties, primarily through the formation of ion-leakage pores via α4-α5 hairpins. His178 in helix 4 of the Cry4Aa mosquito-active toxin has been suggested to play a crucial role in its biotoxicity.

Objective: This study aimed to investigate the functional importance of Cry4Aa-His178 through experimental and computational analyses.

View Article and Find Full Text PDF

Cationic Calcium Channels Activated by Cyclic Nucleotides in Plants: A Systematic Review Using the PRISMA Method.

Prog Biophys Mol Biol

September 2025

Grupo de investigación en Química Teórica y Bioinformática, Department of Chemistry, Universidad de Caldas, Cl. 65 # 26-10, Manizales, Colombia.

The primary objective of this review is to analyze primary research published over the past six years concerning cyclic nucleotide-gated calcium channels (CNGC) in plants. The aim is to structure this information to identify and organize existing knowledge regarding their tertiary and quaternary structures, as well as the activation mechanisms of CNGC. Studies on plant CNGC published between January 2018 and May 2025 were included, while research focused on animals, bacteria, or ions other than calcium was excluded.

View Article and Find Full Text PDF

Background: Arterial pH reflects both metabolic and respiratory distress in cardiac arrest and has prognostic implications. However, it was excluded from the 2024 update of the Utstein out-of-hospital cardiac arrest (OHCA) registry template. We investigated the rationale for including arterial pH into models predicting clinical outcomes.

View Article and Find Full Text PDF