98%
921
2 minutes
20
Quenchbodies, antibodies labelled with fluorophores that increase in intensity upon antigen binding, offer great promise for biosensor development. Nanobody-based quenchbodies are particularly attractive due to their small size, ease of expression, high stability, rapid evolvability, and amenability to protein engineering. However, existing designs for protein detection show limited dynamic range, with fluorescence increases of only 1.1-1.4 fold. Here we identify the tryptophan residues in the nanobody complementarity-determining regions (CDRs) that are critical to quenchbody performance. Using a combination of rational design and molecular dynamics simulations, we developed an optimised nanobody scaffold with tryptophans introduced at key positions. We used this scaffold in an in vitro directed-evolution screen against human inflammatory cytokine interleukin-6 (IL-6). This yielded quenchbodies with 1.5-2.4-fold fluorescence increases, enabling IL-6 detection down to 1-2 nM. Our scaffold provides a valuable platform for developing biosensors for diverse protein targets, with applications in research, diagnostics, and environmental monitoring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177037 | PMC |
http://dx.doi.org/10.1038/s42003-025-08359-3 | DOI Listing |
Commun Biol
June 2025
Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
Quenchbodies, antibodies labelled with fluorophores that increase in intensity upon antigen binding, offer great promise for biosensor development. Nanobody-based quenchbodies are particularly attractive due to their small size, ease of expression, high stability, rapid evolvability, and amenability to protein engineering. However, existing designs for protein detection show limited dynamic range, with fluorescence increases of only 1.
View Article and Find Full Text PDFACS Sens
November 2024
Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Kanagawa 226-8501, Japan.
We developed a nanobody-based homogeneous bioluminescent immunosensor to achieve a one-pot detection for point-of-care testing (POCT). This immunosensor was named BRET nano Q-body as its emission color changes via bioluminescence resonance energy transfer (BRET) upon antigen addition. NanoLuc luciferase and a cysteine-containing tag were fused to the N-terminus of the nanobody, which was labeled with a fluorescent dye via thiol-maleimide Michael addition.
View Article and Find Full Text PDFFEBS Open Bio
February 2025
Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Australia.
Nanobodies, the smallest functional antibody fragment derived from camelid heavy-chain-only antibodies, have emerged as powerful tools for diverse biomedical applications. In this comprehensive review, we discuss the structural characteristics, functional properties, and computational approaches driving the design and optimisation of synthetic nanobodies. We explore their unique antigen-binding domains, highlighting the critical role of complementarity-determining regions in target recognition and specificity.
View Article and Find Full Text PDFDrug Test Anal
December 2023
Doping Control Center, Korea Institute of Science and Technology, Seoul, Republic of Korea.
Due to athletes' misuse of recombinant human growth hormone (rhGH) for performance improvement, the World Anti-Doping Agency has designated rhGH as a prohibited substance. This study focuses on the development and improvement of a simple and fast rhGH detection method using a fluorescence-incorporated antibody sensor "Quenchbody (Q-body)" that activates upon antigen binding. Camelid-derived nanobodies were used to produce stable Q-bodies that withstand high temperatures and pH levels.
View Article and Find Full Text PDFAnal Chem
August 2023
Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
Photoinduced electron-transfer (PET) immunoassay based on a fluorescence site-specifically labeled nanobody, also called mini Quenchbody (Q-body), exhibits extraordinary sensitivity and saves much time in the homogeneous noncompetitive mode and is therefore regarded as a valuable method. However, limited by the efficiency of both quenching and dequenching of the fluorescence signal before and after antigen binding associated with the PET principle, not all original nanobodies can be used as candidates for mini Q-bodies. Herein, with the anti-quinalphos nanobody 11A (Nb-11A) as the model, we, for the first time, adopt a strategy by combining X-ray structural analysis with site-directed mutagenesis to design and produce a mutant Nb-R29W, and then successfully generate a mini Q-body by labeling with ATTO520 fluorescein.
View Article and Find Full Text PDF