Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Calcium carbonate dissolution is the dominant negative feedback in the ocean for neutralizing the acidity from rising atmospheric carbon dioxide. Mimicking this natural process, the accelerated weathering of limestone (AWL) can store carbon as bicarbonate in the ocean for tens of thousands of years. Here, we evaluate the potential of AWL on ships as a carbon sequestration approach. We show a successful prediction of laboratory measurements using a model that includes the most recent calcite dissolution kinetics in seawater. When simulated along a Pacific shipping lane in the Estimating the Circulation and Climate of the Ocean-Darwin ocean-general circulation model, surface alkalinity and dissolved inorganic carbon increase by <1.4% after 10 years of continuous operation, leaving a small pH and partial pressure of carbon dioxide impact to the ocean while reducing 50% carbon dioxide emission in maritime transportation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12175884PMC
http://dx.doi.org/10.1126/sciadv.adr7250DOI Listing

Publication Analysis

Top Keywords

accelerated weathering
8
weathering limestone
8
potential sequestration
4
sequestration accelerated
4
limestone ships
4
ships calcium
4
calcium carbonate
4
carbonate dissolution
4
dissolution dominant
4
dominant negative
4

Similar Publications

Objective: This study investigated the locations of amino acid modifications within two major human hair keratins (Type I K31 and Type II K85) with probable implications for protein and hair structural component integrity. The particular focus was on cysteine modifications that disrupt intra-protein and inter-protein disulphide bonds.

Methods: Human hair was exposed to accelerated, sequential heat or UV treatments, simulating effects resulting from the use of heated styling tools and environmental exposure over a time frame approximating one year.

View Article and Find Full Text PDF

Purpose: To analyze stabilization results using various standard and accelerated corneal cross-linking (CXL) protocols in patients younger than 18 years.

Methods: This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 guidelines. A bibliographic search was carried out based on PubMed and Scopus data, with the last being performed in December 2024.

View Article and Find Full Text PDF

Truxenone-Based Covalent Organic Framework/Carbon Nanotube Composite for High-Performance Low-Temperature Sodium-Ion Batteries.

Angew Chem Int Ed Engl

September 2025

School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Huazhong University of Science and Technology, Wuhan, 430074, China.

Low-temperature rechargeable batteries face great challenges due to the sluggish reaction kinetics. Redox covalent organic frameworks (COFs) with porous structures provide a viable solution to accelerate the ionic diffusion and reaction kinetics at low temperatures. However, the applications of COFs in low-temperature batteries are still at their infancy stage.

View Article and Find Full Text PDF

The spoilage of bulgur, characterized by a distinctive off-odor, poses a significant challenge to the bulgur industry, resulting in an annual production loss of 10 %. The tempering process plays a critical role to prevent this problem. This study investigated spoilage under high-moisture tempering conditions (15-27 % moisture, 25, 35 and 45 °C, 0-12 h), focusing on off-odor formation, volatile compounds and microbial activity.

View Article and Find Full Text PDF

Enhanced freeze-drying efficiency in restructured peach: Multiscale insights into heat and mass transfer mechanisms from experiments and computational simulations.

Food Res Int

November 2025

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS) / Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; College of Food Science, Shenyang Agricultural University, Shenyang 110866, China. Electronic a

While restructuring agricultural products enhances heat and mass transfer during freeze-drying, the underlying mechanisms remain poorly understood. This study employed a multiscale approach, combining freezing dynamics, sublimation drying kinetics, X-ray tomography, gas permeability assessments, thermodynamic parameters analysis, and mathematical modeling to systematically investigate the differences in transfer properties between natural and restructured peaches across the freezing and sublimation drying processes. Key results demonstrated that restructuring decreased the freezing time by 21.

View Article and Find Full Text PDF