Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Super-resolution radial fluctuation (SRRF) microscopy is a novel computational imaging technique that bypasses the optical diffraction limit (lateral resolutions of 200-300 nm), achieving lateral resolutions of approximately 50-100 nm while being compatible with live-cell imaging. Unlike traditional super-resolution methods such as stimulated emission depletion (STED) and single molecule localization microscopy (SMLM), SRRF minimizes phototoxicity and hardware complexity by analyzing fluorescence intensity fluctuations in standard wide-field microscopy data. This is achieved by calculating local gradient convergence ("radiality") across time-series images, enabling the reconstruction of sub-diffraction structures without specialized fluorophores or high-intensity illumination. Implemented through the open-source NanoJ-SRRF platform, SRRF optimizes parameters like ring radius and radiality magnification to enhance resolution, suppress noise, and maintain computational efficiency. Its advantages include low phototoxicity, compatibility with conventional dyes, and integration with various imaging modalities, allowing dynamic visualization of subcellular processes (e.g., mitochondrial fission, microtubule dynamics). Despite its limitations in axial resolution and potential artifacts in high-density structures, recent advancements like enhanced SRRF (eSRRF) and variance reweighted radial fluctuations and enhanced SRRF (VeSRRF) address these challenges, facilitating real-time, multicolor imaging. Applications range from ultrastructural studies to clinical pathology, with future developments in AI processing and multimodal integration promising further enhancements in imaging capabilities. SRRF stands to significantly impact the understanding of dynamic subcellular processes and biomedical research.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-025-02396-zDOI Listing

Publication Analysis

Top Keywords

super-resolution radial
8
radial fluctuations
8
lateral resolutions
8
subcellular processes
8
enhanced srrf
8
srrf
7
imaging
5
fluctuations srrf
4
srrf versatile
4
versatile accessible
4

Similar Publications

Super-resolution fluorescence microscopy (SRM) has enabled visualization of nanoscale cellular structures, but systematic evaluation of resolution assessment methods across diverse biological structures and SRM modalities remains lacking. Here, we comparatively assessed three resolution metrics-Full Width at Half Maximum (FWHM), decorrelation analysis, and Fourier Ring Correlation (FRC)-across two SRM techniques (Super-resolution Radial Fluctuation, SRRF; Stimulated Emission Depletion, STED) using key subcellular structures: microtubules (filaments), mitochondria (membranes), and nuclear pore protein Nup98 (single particles) in HeLa/U2OS cells. Our results showed decorrelation analysis provided robust resolution estimates across all structures and modalities (confocal/SRRF/STED), exhibiting superior performance for dense nuclear pore complexes where FWHM failed due to overlapping point spread functions.

View Article and Find Full Text PDF

Background: Structural indices of cardiac diseases estimated via cardiac magnetic resonance imaging (CMR) have shown promise as early-stage markers. Despite the growing popularity of CMR-based myocardial strain calculations, measures of complete spatiotemporal strains (i.e.

View Article and Find Full Text PDF

The ubiquitous ARV1 gene shows significant functional conservation across eukaryotes. Saccharomyces cerevisiae Arv1 is implicated in several cellular processes, including lipid/sterol homeostasis, morphogenesis, and drug resistance. Human and fungal ARV1 functionally complement S.

View Article and Find Full Text PDF

Traditional superoscillation focusing (SOF) typically requires complex optimization of the incident light field. These complexities may limit the practical application of superoscillation. High-order radially polarized Laguerre-Gaussian beams inherently support SOF due to their multi-ring amplitude distribution and 0-π phase alternation, which align with the necessary destructive interference mechanisms.

View Article and Find Full Text PDF

Super-Resolution Radial Fluctuation (SRRF) enables live-cell super-resolution imaging, but requires careful parameter selection. Here, we quantify the impact of NanoJ-SRRF parameters on microtubule imaging using FWHM and SQUIRREL-based error mapping. Ring radius proved most critical, with values >1.

View Article and Find Full Text PDF