98%
921
2 minutes
20
In recent years, the development of high-throughput DNA synthesis technology has significantly advanced research in genomics and synthetic biology. Traditional DNA synthesis methods, such as first-generation DNA synthesizer and PCR-based approaches, have demonstrated excellent performance in many aspects. However, they exhibit notable limitations in synthesis of long-chain DNA and large-scale parallel synthesis. Second-generation high-throughput DNA synthesis technologies, including photolithographic, inkjet, electrochemical, and thermally controlled synthesis techniques based on microarray chips, have shown remarkable advantages in improving synthesis efficiency, reducing costs, and increasing throughput. However, these methods rely on chemical principles, making it challenging to overcome issues related to short sequence length and environmental pollution. This has led to the emergence of third-generation enzymatic synthesis technologies, which offer distinct advantages in environmental sustainability and long-chain DNA synthesis, demonstrating great application potential. This review defines microarray-based synthesis as the boundary for high-throughput synthesis, categorizing previous methods as traditional synthesis technologies. It systematically elaborates on mainstream high-throughput synthesis technologies, analyzing and comparing their advantages and limitations. Furthermore, it explores their applications in life sciences, medicine, and other fields. Finally, potential technological advancements and application expansions are discussed, providing insights into the future development directions and challenges of high-throughput DNA synthesis technology, with the aim of offering valuable references for related research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5tb00869g | DOI Listing |
mSphere
September 2025
Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA.
Apicomplexan AP2 (ApiAP2) family proteins are a family of transcription factors that are known to regulate gene expression in apicomplexan pathogens, including . In this study, we focused on TgAP2X-7, a member of the APiAP2 family that is predicted to be essential for fitness. Endogenous tagging of TgAP2X-7 followed by immunofluorescence analysis revealed that it's a cell cycle-regulated nuclear protein with peak expression in the G1 phase.
View Article and Find Full Text PDFElife
September 2025
Graduate School of Life Science, Hokkaido University, Sapporo, Japan.
DNA replication requires recruitment of Cdc45 and GINS into the MCM double hexamer by initiation factors to form an active helicase, the Cdc45-MCM-GINS (CMG) complex, at the replication origins. The initiation factor Sld3 is a central regulator of Cdc45 and GINS recruitment, working with Sld7 together. However, the mechanism through which Sld3 regulates CMG complex formation remains unclear.
View Article and Find Full Text PDFInt J Cancer
September 2025
Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.
This study examined the effects of 24R,25-dihydroxyvitamin D (24R,25(OH)D) in estrogen-responsive laryngeal cancer tumorigenesis in vivo, the mechanisms involved, and whether the ability of the tumor cells to produce 24R,25(OH)D locally is estrogen-dependent. Estrogen receptor alpha-66 positive (ER+) UM-SCC-12 cells and ER- UM-SCC-11A cells responded differently to 24R,25(OH)D in vivo; 24R,25(OH)D enhanced tumorigenesis in ER+ tumors but inhibited tumorigenesis in ER- tumors. Treatment with 17β-estradiol (E) for 24 h reduced levels of CYP24A1 protein but increased 24R,25(OH)D production in ER+ cells; treatment with E for 9 min reduced CYP24A1 at 24 h and reduced 24R,25(OH)D production in ER- cells.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Department of Viral Transformation, Leibniz Institute of Virology (LIV), Martinistraße, Hamburg, Germany.
Unlabelled: Human adenoviruses (HAdVs) induce significant reorganization of the nuclear environment, leading to the formation of virus-induced subnuclear structures known as replication compartments (RCs). Within these RCs, viral genome replication, gene expression, and modulation of cellular antiviral responses are tightly coordinated, making them valuable models for studying virus-host interactions. In a recent study, we analyzed the protein composition of HAdV type 5 (HAdV-C5) RCs isolated from infected primary cells at different time points during infection using quantitative proteomics.
View Article and Find Full Text PDFJ Virol
September 2025
Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands.
Vertebrate animals and many small DNA and single-stranded RNA viruses that infect vertebrates have evolved to suppress genomic CpG dinucleotides. All organisms and most viruses additionally suppress UpA dinucleotides in protein-coding RNA. Synonymously recoding viral genomes to introduce CpG or UpA dinucleotides has emerged as an approach for viral attenuation and vaccine development.
View Article and Find Full Text PDF