98%
921
2 minutes
20
In this study, we apply the Natural Transform Iterative Method (NTIM), a relatively new and efficient analytical tool for solving fractional differential equations (FDEs). NTIM combines the Natural Transform and Daftardar-Jafari polynomials to construct approximate solutions without the need for discretization, small parameters, or linearization. This method is particularly effective for handling fractional partial differential equations due to its simplicity and rapid convergence. In comparison with other established techniques, such as the Homotopy Perturbation Method (HPM), Adomian Decomposition Method (ADM), and Fractional Homotopy Analysis Transform Method (FHATM). NTIM demonstrates improved accuracy and computational efficiency. The method is validated through numerical and graphical comparisons with exact solutions, showing its potential for broader applications in nonlinear fractional systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174329 | PMC |
http://dx.doi.org/10.1038/s41598-025-05720-8 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
School of Medicine, Chongqing University, Chongqing 400044, China.
Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.
View Article and Find Full Text PDFAcc Chem Res
September 2025
Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.
ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.
View Article and Find Full Text PDFBiomacromolecules
September 2025
Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.
View Article and Find Full Text PDFJ Biophotonics
September 2025
Institute of Photonics and Photon-Technology, Northwest University, Xi'an, China.
Non-invasive glucose monitoring using Raman spectroscopy with 830 nm excitation presents a promising alternative to traditional fingerstick methods for diabetes management research. An integrated in vivo Raman system enables transcutaneous glucose detection and has demonstrated robust performance in oral glucose tolerance tests (OGTT), validating its reliability. Inter-subject correlation between spectral features and glucose concentration was addressed by the intensity of the fingerprint peak (I), peak intensity ratio (I/I), and the spectral area ratio (S/S), whose correlation coefficient (R) was 0.
View Article and Find Full Text PDFElectromagn Biol Med
September 2025
Laboratory of Biophysics of Sub-Cellular Structures, Scientific-Research Institute of Biology, Chair of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia.
Effect of millimeter range electromagnetic waves (MM EMW) with the frequency 51.8 GHz on the interaction of DNA-specific ligands-intercalators acridine orange (AO) and methylene blue (MB) with bovine serum albumin (BSA) has been studied. The measurements were implemented by the spectroscopic methods that open new opportunities for such goals.
View Article and Find Full Text PDF