Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High efficiency of charge carrier conduction is crucial for photoelectrical performance in ultraviolet C (UVC) photodetectors (PDs) based on heteroepitaxial beta-gallium oxide (β-GaO) thin films. However, the presence of in-plane rotational domains due to anisotropic symmetry severely degraded the efficiency of charge carrier conduction by trapping and recombination of carriers in conventional lateral PD (LPD). Here, we demonstrate an approach that enables vertical conduction configuration while preserving the high crystallinity of epitaxial Si-doped β-GaO (Si:GaO) through the epilayer transfer using a hole pattern sapphire nanomembrane (HPSN) growth template. Based on the characterization of domain orientation and photoresponsivity in transferred epitaxial Si:GaO membranes, we reveal the defect-related anisotropic conduction arising from the vertical interdomain and lateral intradomain conduction. Compared to the indirect intradomain pathway in LPD, the vertical PD (VPD) exhibited high efficiency of charge carrier conduction through the direct interdomain pathways. As a result, the self-powered VPD exhibits high rectifying characteristics with a high detectivity of 1.02 × 10 Jones and a fast response time of 93 ms. Moreover, the multipixel UVC imaging PD arrays have been successfully demonstrated without any external applied bias, showing high recognition rates and practical utility for reliable UVC imaging applications. Our work not only demonstrates the feasibility of obtaining single-crystal epitaxial membranes for a wide range of material systems but also provides pathways for overcoming material limitations with defect-induced optoelectrical systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12224291PMC
http://dx.doi.org/10.1021/acsnano.5c01454DOI Listing

Publication Analysis

Top Keywords

efficiency charge
12
charge carrier
12
carrier conduction
12
high efficiency
8
uvc imaging
8
conduction
7
high
6
self-powered ultraviolet-c
4
ultraviolet-c imaging
4
epitaxial
4

Similar Publications

Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.

View Article and Find Full Text PDF

Lithium metavanadate (LiVO) is a material of growing interest due to its monoclinic 2/ structure, which supports efficient lithium-ion diffusion through one-dimensional channels. This study presents a detailed structural, electrical, and dielectric characterization of LiVO synthesized a solid-state reaction, employing X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), and impedance/dielectric spectroscopy across a temperature range of 473-673 K and frequency range of 10 Hz to 1 MHz. XRD and Rietveld refinement confirmed high crystallinity and single-phase purity with lattice parameters = 10.

View Article and Find Full Text PDF

Plasmonic nanoparticles boost low-current perovskite LEDs governed by photon recycling effects.

RSC Adv

September 2025

Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC C/Sor Juana Inés de la Cruz, 3 Madrid 28049 Spain

Perovskite light-emitting diodes (PeLEDs) have emerged as a promising technology for next-generation display and lighting applications, thanks to their remarkable colour purity, tunability, and ease of fabrication. In this work, we explore the incorporation of plasmonic spherical nanoparticles (NPs) directly embedded into the green-emitting CsPbBr perovskite layer in a PeLED as a strategy to enhance both its optical and electrical properties. We find that plasmonic effects directly boost spontaneous emission while also influencing charge carrier recombination dynamics.

View Article and Find Full Text PDF

Carbon particle aggregation for enhanced flow capacitive deionization.

Chem Commun (Camb)

September 2025

The Institute of Technological Sciences, MOE Key Laboratory of Hydraulic Machinery Transients, Wuhan University, Wuhan 430072, China.

Flow electrode capacitive deionization is governed by particle dynamics, which are strongly influenced by surface properties and flow conditions. This study shows that carbon particles with lower surface charge aggregate more rapidly into larger clusters, significantly enhancing desalination rates and achieving current efficiencies above 90%, offering guidance for advancing capacitive deionization systems.

View Article and Find Full Text PDF

Polymer-derived ceramics are a versatile class of multifunctional materials synthesized the high-temperature treatment of a preceramic polymer. In this work, we report the synthesis of a vanadium carbide-embedded carbonaceous hybrid by pyrolyzing a modified preceramic polymer incorporating vanadium acetylacetonate in a polysilsesquioxane followed by hydrofluoric acid etching. The structural and microscopic characterisation confirmed the uniform distribution of nanoparticulate vanadium carbide in the matrix.

View Article and Find Full Text PDF