Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Discovery of bioactive peptides, including those acting to permeabilize and/or kill bacterial cells (antimicrobial peptides) has drawn extensive interest in recent years. However, current technologies for their identification are limited. To address these limitations, the Intracellular Release Peptide Display (IRPD) technology allowing the recombinant "display" of intracellular linear peptides was developed. IRPD uses the protease domain of the capsid protein from the Semliki Forest virus as a scaffold to express and liberate linear peptides intracellularly in IRPD is a universal platform that allows screening of millions of peptides and the discovery of bioactive peptides from direct target interactions and independent of the cell envelope barrier. Here, we identified peptides that cause increased bacterial cell envelope permeability and lysis. The most promising candidate, P38, effectively kills Gram-negative pathogens by disrupting the inner membrane without detectable resistance development. Thus, P38 constitutes an interesting hit peptide for further development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12164208PMC
http://dx.doi.org/10.1016/j.isci.2025.112619DOI Listing

Publication Analysis

Top Keywords

intracellular release
8
release peptide
8
peptide display
8
resistance development
8
discovery bioactive
8
bioactive peptides
8
linear peptides
8
cell envelope
8
peptides
7
peptide
4

Similar Publications

Elesclomol-Copper combination synergistically targets mitochondrial metabolism in cancer stem cells to overcome chemoresistance in pancreatic ductal adenocarcinoma.

Mol Ther

September 2025

Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis, partly due to cancer stem cells (CSCs) that drive progression and treatment resistance. We explored the therapeutic potential of inducing cuproptosis, a copper-dependent regulated cell death, in CSC-enriched PDAC models. Using human and murine PDAC models, we evaluated elesclomol, a copper transport enhancer.

View Article and Find Full Text PDF

Chargeable Hydrogels with Dual Modulatory Effects of Bacterial Killing and Immune Remodeling toward Wound Healing.

ACS Appl Mater Interfaces

September 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200070, China.

Wound infections challenge clinical medicine, and developing novel therapies is critically important in overcoming antimicrobial resistance and an off-balanced immune microenvironment. Electrical stimulation as a biocompatible, easy-to-operate, and controllable technique has great potential in eradicating pathogens and modulating the immune system. However, safe and soft platforms that integrate both bactericidal and immunological modulatory effects of electrical stimulation are rarely reported.

View Article and Find Full Text PDF

Parasitic infections of the central nervous system (CNS) represent a considerable health burden in low- and middle-income countries. During chronic disease, parasites modulate host immunity to ensure long-term persistence while limiting collateral tissue damage. A key feature of this immune remodeling is the progressive T-cell dysfunction that may culminate in T-cell exhaustion, characterized by increased expression of inhibitory receptors (TIM-3, LAG-3, KLRG1), checkpoint molecules (PD-1, PD-L1), suppressor of cytokine signaling-1 (SOCS1), and arginase-1.

View Article and Find Full Text PDF

CpG-A induces liquid-liquid phase separation of HMGB1 to activate the RAGE-mediated inflammatory pathway.

Proc Natl Acad Sci U S A

September 2025

State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

High-mobility group box protein 1 (HMGB1) is a chromatin-associated nonhistone protein widely distributed in the nucleus of eukaryotic cells. It is transported extracellularly as a proinflammatory mediator or late warning protein to induce immune and inflammatory reactions upon stimuli such as microbial infection. Here, we have found that HMGB1 directly interacts with bacterial DNA analogue CpG-A in the extracellular environment to undergo liquid-liquid phase separation (LLPS) via its positively charged DNA-binding domain.

View Article and Find Full Text PDF

Lysosome-dependent cell death (LDCD) is a regulated form of cell death initiated by increased lysosomal membrane permeability, leading to the cytoplasmic release of lysosomal enzymes and subsequent cellular damage. Molecular mechanisms controlling LDCD include lysosomal membrane instability and lysosomal enzyme release, which together lead to cell damage. A more profound comprehension of these underlying mechanisms may reveal new therapeutic targets for diseases associated with lysosomal dysfunction.

View Article and Find Full Text PDF