Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Iron phosphate (FePO·2HO) was synthesized via anodic oxidation using nickel-iron alloy composition simulates from laterite nickel ore as the anode and graphite electrodes as the cathode, with phosphoric acid serving as the electrolyte. A uniform experimental design was employed to systematically optimize the synthesis parameters including voltage, electrolyte concentration, electrolysis time, and degree of acidity or alkalinity (pH). The results indicate that the addition of cetyltrimethylammonium bromide (CTAB) surfactant effectively modulated the morphology of the anodic oxidation products. The optimized conditions were determined to be an electrolyte concentration of 1.2 mol/L, a voltage of 16 V, a pH of 1.6, an electrolysis time of 8 h, and a 3% CTAB addition. Under these conditions, the synthesized FePO·2HO exhibited enhanced performance as a lithium-ion battery precursor. Specifically, the corresponding LiFePO/C cathode delivered an initial discharge capacity of 157 mA h g at 0.2 C, retaining 99.36% capacity after 100 cycles. These findings provide valuable insights and theoretical foundations for the efficient preparation of iron phosphate precursors, highlighting the significant impact of optimized synthesis conditions on the electrochemical performance of lithium iron phosphate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12155975 | PMC |
http://dx.doi.org/10.3390/ma18112555 | DOI Listing |