Study on Winding Forming Process of Glass Fiber Composite Pressure Vessel.

Materials (Basel)

School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China.

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Composite pressure vessels offer significant advantages over traditional metal-lined designs due to their high strength-to-weight ratio, corrosion resistance, and design flexibility. This study investigates the structural design, winding process, finite element analysis, and experimental validation of a glass fiber-reinforced composite low-pressure vessel. A high-density polyethylene (HDPE) liner was designed with a nominal thickness of 1.5 mm and manufactured via blow molding. The optimal blow-up ratio was determined as 2:1, yielding a wall thickness distribution between 1.39 mm and 2.00 mm under a forming pressure of 6 bar. The filament winding process was simulated using CADWIND software (version 10.2), resulting in a three-layer winding scheme consisting of two helical layers (19.38° winding angle) and one hoop layer (89.14°). The calculated thickness of the composite winding layer was 0.375 mm, and the coverage rate reached 107%. Finite element analysis, conducted using Abaqus, revealed that stress concentrations occurred at the knuckle region connecting the dome and the cylindrical body. The vessel was predicted to fail at an internal pressure of 5.00 MPa, primarily due to fiber breakage initiated at the polar transition. Experimental hydrostatic burst tests validated the simulation, with the vessel exhibiting failure at an average pressure of 5.06 MPa, resulting in an error margin of only 1.2%. Comparative tests on vessels without adhesive sealing at the head showed early failure at 2.46 MPa, highlighting the importance of head sealing on vessel integrity. Scanning electron microscopy (SEM) analysis confirmed strong fiber-matrix adhesion and ductile fracture characteristics. The close agreement between the simulation and experimental results demonstrates the reliability of the proposed design methodology and validates the use of CADWIND and FEA in predicting the structural performance of composite pressure vessels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12156421PMC
http://dx.doi.org/10.3390/ma18112485DOI Listing

Publication Analysis

Top Keywords

composite pressure
12
pressure vessels
8
winding process
8
finite element
8
element analysis
8
pressure
6
composite
5
vessel
5
winding
5
study winding
4

Similar Publications

Distinct codon usage signatures reflecting evolutionary and pathogenic adaptation in the Acinetobacter baumannii complex.

Eur J Clin Microbiol Infect Dis

September 2025

School of Bioengineering and Biosciences, Department of Biochemistry, Lovely Professional University, Punjab, 144411, India.

Purpose: This study investigates codon usage and amino acid usage bias in the genus Acinetobacter to uncover the evolutionary forces shaping these patterns and their implications for pathogenicity and biotechnology.

Methods: Codon usage patterns were examined in representative genomes of the genus Acinetobacter using standard codon bias indices, including GC content, relative synonymous codon usage (RSCU), effective number of codons (ENC), and codon adaptation index (CAI). Neutrality and parity plots were employed to evaluate the relative influence of mutational pressure and natural selection on codon preferences.

View Article and Find Full Text PDF

This study evaluated if acidifying agents used for ammonia control and pathogen reduction in poultry houses have a deleterious effect on the survival and growth of Salmonella Infantis. Changes in antimicrobial resistance (AMR) and pESI plasmid gene composition were also investigated. When S.

View Article and Find Full Text PDF

Background: The objective of this study was to compare the effects of daily consumption of white potatoes compared with white rice on cardiometabolic health in individuals with type-2 diabetes (T2D).

Objective: To determine the effects of white potato consumption compared to white rice (a commonly consumed refined grain) on indices of glycemic control and cardiovascular health in individuals with overweight or obesity and T2D.

Methods: In this randomized crossover study, comparative control trial, 24 adults with T2D [45-80 y, body mass index (kg/m) 25-40] consumed baked white potatoes (100 g) or calorie-matched white rice (75 g) daily for 12 wk, separated by a 2-wk washout, with assessments of glycemic control, lipids, inflammation, blood pressure, endothelial function, and body composition at baseline (only 1 baseline visit included as a covariate in statistical analyses), 6 wk, and 12 wk.

View Article and Find Full Text PDF

Coronary microvascular disease has been found to increase the incidence of the composite endpoint for cardiovascular events and affect coronary revascularization. Coronary microvascular disease is often accompanied by epicardial disease, and despite successful revascularization and optimal medications, coronary microvascular disease may lead to reduced exercise tolerance and worsening clinical symptoms. Moreover, despite advances in percutaneous coronary intervention for coronary revascularization, the management of microvascular obstruction in reperfused myocardial tissue remains challenging and is a high-risk procedure.

View Article and Find Full Text PDF

Lemon balm (), a perennial herb belonging to the Lamiaceae family, is widely recognized for its medicinal properties and therapeutic benefits. This review offers a detailed exploration of the botanical features, phytochemical composition, and pharmacological uses of , highlighting key bioactive compounds such as phenolic acids (including rosmarinic and caffeic acids), flavonoids, essential oils (such as citral and citronellal), and triterpenoids (ursolic and oleanolic acids). Advanced extraction techniques, such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized liquid extraction (PLE), supercritical fluid extraction (SFE), and matrix solid-phase dispersion (MSPD), have greatly improved the efficiency of extraction, the preservation of bioactivity, and the sustainability of acquiring these bioactive compounds.

View Article and Find Full Text PDF