98%
921
2 minutes
20
: Swept-Source Optical Coherence Tomography (SS-OCT) is a novel optical biometry technology with limited published data on its reliability compared to the gold standard, partial coherence interferometry (PCI). This study aims to assess the agreement between an SS-OCT biometer (Argos) and a PCI device (IOLMaster 500) in terms of biometry values, intraocular lens (IOL) power calculation and mean prediction error (ME). : In this prospective comparative study, axial length (AL), anterior chamber depth (ACD), flat (K1), steep (K2) and mean (Km) keratometry values, astigmatism power, J0, and J45 vector components, white-to-white distance (WTW), and IOL power calculations for nine IOL models using four formulas were compared in cataract patients. Refractive outcomes were assessed in eyes implanted with SN60WF and Panoptix IOLs, with ME calculated for each module and formula for both IOLs postoperatively. : This study included 133 eyes (mean age: 66.0 ± 10.95 years). Argos measured significantly higher ACD and steeper keratometry values than IOLMaster, albeit without significant differences in AL, astigmatism power, WTW, J0, and J45. Mean IOL power differences were within the clinically acceptable threshold (0.50 D), except for SN6ATx with Hoffer Q and Haigis, and Clareon with Haigis. For Panoptix and SN60WF, IOLMaster demonstrated a more hyperopic ME than Argos with SRK/T, Holladay 1, and Hoffer Q; however, this was without clinically significant differences. : Argos and IOLMaster 500 presented differences in ACD, keratometry values, and IOL power calculation. However, both devices showed non-clinically significant differences in IOL power calculation and ME in the majority of formulas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12155701 | PMC |
http://dx.doi.org/10.3390/jcm14113903 | DOI Listing |
J Cataract Refract Surg
July 2025
Helsinki Retina Research Group, University of Helsinki, Finland.
Topic: To compare the outcomes of surgical approaches to correct ametropia following cataract and lens surgery.
Clinical Relevance: Despite advancements in the field of biometry and intraocular lens (IOL) power calculation formulas, complete elimination of refractive surprises following cataract and lens surgery is impossible. Preferred Practice Patterns acknowledges the possibility of refractive surprise following cataract surgery; however, no recommendations regarding the preferred treatment have been given.
J Refract Surg
September 2025
From the Department of Ophthalmology, Goethe-University, Frankfurt am Main, Germany and.
Purpose: To evaluate intraocular lens (IOL) power calculation of a non-diffractive extended depth of focus (EDOF) IOL after myopic laser in situ keratomileusis (LASIK) without historical data.
Methods: In this consecutive case series, patients who had undergone lens surgery with implantation of a non-diffractive EDOF IOL after myopic laser in situ keratomileusis (LASIK) at the Department of Ophthalmology, University Hospital Frankfurt, Frankfurt, Germany, were included. Preoperative assessments included biometry and tomography using Scheimpflug technology (Pentacam; Oculus Optikgeräte GmbH).
J Refract Surg
September 2025
From the Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
Purpose: To determine the accuracy of a new machine learning-based open-source IOL formula (PEARLS-DGS) in 100 patients who underwent uncomplicated cataract surgery and had a history of laser refractive surgery for myopic defects.
Methods: The setting for this retrospective study was HUMANITAS Research Hospital, Milan, Italy. Data from 100 patients with a history of photorefractive keratectomy or laser in situ keratomileusis were retrospectively analyzed to assess the accuracy of the formula.
J Refract Surg
September 2025
From Qvision, Department of Ophthalmology of VITHAS Almería Hospital, Almería, Spain.
Purpose: To assess differences in intraocular lens (IOL) power calculation prediction error (PE) considering the manufacturing tolerance or exact power (EP) versus labeled power (LP), and to compare accuracy using the Barrett formula with optimized constant versus a thick-lens formula.
Methods: The PE and absolute PE were calculated for a random eye of patients implanted with the multifocal Liberty Q-Flex 640PM IOL (Medicontur Ltd) considering the LP and the EP provided by the manufacturer. The outcomes for the Barrett with optimized constant formula and a thick-lens formula personalized for the surgeon, biometer, and IOL were compared.
Eye (Lond)
September 2025
Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital, Fudan University, Shanghai, China.
Objectives: To compare the accuracy of two different corneal refractive power measurements in intraocular lens (IOL) power calculation in post-myopic-LASIK eyes.
Methods: Post-myopic-LASIK patients scheduled for cataract surgery were enrolled. Corneal refractive power centred on corneal apex (K) and pupil centre (K), decentration of ablation zone, and Kappa angle were measured by Pentacam.