Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report a multi-omics study in a human cell line with mutations in three subunits of origin-recognition complex (ORC). Although the ORC subunits should bind DNA as part of a common six-subunit ORC, there are thousands of sites in the genome where one subunit binds but not another. DNA-bound ORC2 compacts chromatin and attracts repressive histone marks to focal areas of the genome, but ORC2 also activates chromatin at many sites and protects the genes from repressive marks. These epigenetic changes regulate hundreds of genes, including some epigenetic regulators, adding an indirect mechanism by which ORC2 regulates epigenetics without local binding. DNA-bound ORC2 also prevents the acquisition of CTCF at focal sites in the genome to regulate chromatin loops and indirectly affect epigenetics. Thus, individual ORC subunits may bind to DNA to act as epigenetic and chromosome structure regulators independent of the role of the six-subunit ORC in DNA replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360442PMC
http://dx.doi.org/10.1016/j.celrep.2025.115816DOI Listing

Publication Analysis

Top Keywords

chromosome structure
8
orc subunits
8
subunits bind
8
bind dna
8
six-subunit orc
8
sites genome
8
dna-bound orc2
8
orc2
5
orc
5
regulation epigenetics
4

Similar Publications

Identification of RAV transcription factors (B3-domain-containing) and functional analysis of OsRAV2 in rice blast and drought stress.

J Plant Physiol

September 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China. Electronic address:

RAV transcription factors play roles in a variety of diverse biological processes. However, their role in rice's response to drought and blast stress remains largely unexplored. In this study, we performed a genome-wide characterization and identification of rice RAV transcription factor family genes.

View Article and Find Full Text PDF

Long-range viscosity of the plasma membrane of a living cell measured by a shear-driven flow method.

Biophys J

September 2025

Department of Chromosome Science, National Institute of Genetics, Yata 1111, Mishima, 411-8540, Japan; Genetics Program, Sokendai, Yata 1111, Mishima, 411-8540, Japan.

The viscosity of the plasma membrane in living cells is a crucial biophysical parameter that regulates cellular functions. We categorize the plasma membrane viscosity into short-range and long-range viscosities based on the spatial scale of the cellular processes they influence. Short-range viscosity originates from the Brownian motion of membrane molecules, i.

View Article and Find Full Text PDF

Background: Telomere length (TL) is a valuable marker of aging and stress that reflects both genetic and environmental influences. Quantitative PCR (qPCR) TL measurement is a powerful and cost-effective assay, especially in population studies with limited quantities of source material. Nevertheless, collecting and transporting high-quality blood samples can be logistically challenging, and research suggests that several preanalytical and analytical factors can influence the reliability and precision of the qPCR assay.

View Article and Find Full Text PDF

Background: Recurrent Implantation Failure (RIF) is defined as the inability to establish pregnancy despite high-quality embryo transfer after the application of at least three consecutive in vitro fertilization (IVF)/intracytoplasmic sperm injection-embryo transfer procedures. Chromosomal abnormalities are one of the primary reasons for pregnancy failure, miscarriage, and birth defects in both natural conception and IVF pregnancies. This study was to evaluate the incidence of chromosomal abnormalities in peripheral blood samples from 100 couples who experienced RIF.

View Article and Find Full Text PDF

Background: DNA G-quadruplexes (G4s) are non-canonical secondary structures formed in guanine-rich DNA sequences and play important roles in modulating biological processes through a variety of gene regulatory mechanisms. Emerging G4 profiling allows global mapping of endogenous G4 formation.

Results: Here in this study, we map the G4 landscapes in adult skeletal muscle stem cells (MuSCs), which are essential for injury-induced muscle regeneration.

View Article and Find Full Text PDF