98%
921
2 minutes
20
Spatial transcriptomics technologies have emerged as powerful tools for understanding cellular identity and function within the natural spatial context of tissues. Traditional transcriptomics techniques, such as bulk and single-cell RNA sequencing, lose this spatial information, which is critical for addressing many biological questions. Here, we present a protocol for high-resolution spatial transcriptomics using fixed frozen mouse lung sections mounted on 10X Genomics Xenium slides. This method integrates multiplexed fluorescent in situ hybridization (FISH) with high-throughput imaging to reveal the spatial distribution of mRNA molecules in lung tissue sections, allowing detailed analysis of gene expression changes in a mouse model of pulmonary hypertension (PH). We compared two tissue preparation methods, fixed frozen and fresh frozen, for compatibility with the Xenium platform. Our fixed frozen approach, utilizing a free-floating technique to mount thin lung sections onto Xenium slides at room temperature, preserved tissue integrity and maximized the imaging area, resulting in high-fidelity spatial transcriptomics data. Using a predesigned 379-gene mouse panel, we identified 40 major lung cell types. We detected key cellular changes in PH, including an increase in arterial endothelial cells (AECs) and fibroblasts, alongside a reduction in capillary endothelial cells (CAP1 and CAP2). Through differential gene expression analysis, we observed markers of endothelial-to-mesenchymal transition and fibroblast activation in PH lungs. High-resolution spatial mapping further confirmed increased arterialization in the distal microvasculature. These findings underscore the utility of spatial transcriptomics in preserving the native tissue architecture and enhancing our understanding of cellular heterogeneity in disease. Our protocol provides a reliable method for integrating spatial and transcriptomic data using fixed frozen lung tissues, offering significant potential for future studies in complex diseases such as PH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12151738 | PMC |
http://dx.doi.org/10.70322/jrbtm.2025.10004 | DOI Listing |
NPJ Precis Oncol
September 2025
Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
Breast cancer is a highly heterogeneous disease with diverse outcomes, and intra-tumoral heterogeneity plays a significant role in both diagnosis and treatment. Despite its importance, the spatial distribution of intra-tumoral heterogeneity is not fully elucidated. Spatial transcriptomics has emerged as a promising tool to study the molecular mechanisms behind many diseases.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Life Sciences, Anhui Medical University, Hefei, 230032, China; Translational Research Institute of Henan Provincial People's Hospital, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metaboli
Melanoma is the most aggressive and lethal form of skin cancer, posing significant challenges for prognosis assessment and treatment. Recently, metabolic reprogramming and epigenetic regulation have gained attention for their roles in cancer progression. The role of the key metabolic enzyme dihydrolipoic acid succinyltransferase (DLST) in cancer is currently unclear.
View Article and Find Full Text PDFCell Syst
September 2025
Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:
Spatial transcriptomics allows for the measurement of gene expression within the native tissue context. However, despite technological advancements, computational methods to link cell states with their microenvironment and compare these relationships across samples and conditions remain limited. To address this, we introduce Tissue Motif-Based Spatial Inference across Conditions (TissueMosaic), a self-supervised convolutional neural network designed to discover and represent tissue architectural motifs from multi-sample spatial transcriptomic datasets.
View Article and Find Full Text PDFPLoS One
September 2025
Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China.
MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.
View Article and Find Full Text PDFBioinformatics
September 2025
Department of Mathematical Sciences, The University of Texas at Dallas, TX United States.
Motivation: The advent of next-generation sequencing-based spatially resolved transcriptomics (SRT) techniques has reshaped genomic studies by enabling high-throughput gene expression profiling while preserving spatial and morphological context. Understanding gene functions and interactions in different spatial domains is crucial, as it can enhance our comprehension of biological mechanisms, such as cancer-immune interactions and cell differentiation in various regions. It is necessary to cluster tissue regions into distinct spatial domains and identify discriminating genes that elucidate the clustering result, referred to as spatial domain-specific discriminating genes (DGs).
View Article and Find Full Text PDF