98%
921
2 minutes
20
The ribosome's peptidyl transferase center (PTC) catalyzes peptide bond formation during protein synthesis and is targeted by many antibiotic classes. Remarkably, macrolides that bind in the peptide exit tunnel some ~10Å away from the PTC also remotely inhibit PTC and cause translational arrest depending on the synthesized polypeptide sequence. The Arg/Lys-X-Arg/Lys (also known as +X+) motif is particularly susceptible to this inhibition, as peptidyl-tRNA carrying nascent peptide with penultimate arginine or lysine residue fails to react with aminoacyl-tRNA carrying the same amino acids in the presence of macrolides. While structural studies of macrolide-bound ribosomes have shed light on the context-specific nature of this inhibition, the precise roles of the drug, ribosome, and tRNA in modulating PTC activity remain unclear. In this study, we present a detailed structural analysis of ribosome-nascent chain complexes (RNCs) that represent either arrested or non-arrested states, containing various combinations of peptidyl- and aminoacyl-tRNAs, with or without macrolides. Our findings reveal a dynamic interaction between the ribosome-bound drug, the nascent peptide, and the incoming amino acid, which collectively modulates PTC function. This lays the foundation for designing antibiotics that can overcome drug resistance by preventing the induction of inducible genes in pathogens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157430 | PMC |
http://dx.doi.org/10.1101/2025.06.03.657637 | DOI Listing |
J Cell Biol
October 2025
Cell and Systems Biology Program, Hospital for Sick Children, Toronto, Canada.
Mitochondria continually undergo fission to maintain their network and health. Nascent fission sites are marked by the ER, which facilitates actin polymerization to drive calcium flux into the mitochondrion and constrict the inner mitochondrial membrane. Septins are a major eukaryotic cytoskeleton component that forms filaments that can both directly and indirectly modulate other cytoskeleton components, including actin.
View Article and Find Full Text PDFPlant J
September 2025
Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403, USA.
Translation of the chloroplast psbA mRNA in angiosperms is activated by photodamage of its gene product, the D1 subunit of photosystem II (PSII), providing nascent D1 for PSII repair. The involvement of chlorophyll in the regulatory mechanism has been suggested due to the regulatory roles of proteins proposed to mediate chlorophyll/D1 transactions and the fact that chlorophyll is synthesized only in the light in angiosperms. We used ribosome profiling and RNA-seq to address whether the effects of light on chloroplast translation are conserved in the liverwort Marchantia (Marchantia polymorpha), which synthesizes chlorophyll in both the dark and the light.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.
Cotranslational protein folding follows a distinct pathway shaped by the vectorial emergence of the peptide and spatial constraints of the ribosome exit tunnel. Variations in translation rhythm can cause misfolding linked to disease; however, predicting cotranslational folding pathways remains challenging. Here, we computationally predict and experimentally validate a vectorial hierarchy of folding resolved at the atomistic level, where early intermediates are stabilized through non-native hydrophobic interactions before rearranging into the native-like fold.
View Article and Find Full Text PDFSci Adv
August 2025
Department of Nephrology, Chongqing Key Laboratory of Prevention and Treatment of Kidney Disease, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China.
Renal stem cells (RSC) hold great promise as kidney disease regenerative therapies. However, RSCs capable of regenerating de novo nephrons remain unidentified in vertebrates. Therefore, this study aimed to identify RSCs in zebrafish.
View Article and Find Full Text PDFExp Dermatol
August 2025
Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, Haidian District, People's Republic of China.
Cellular communication network factor 1 (CCN1), also known as cysteine-rich angiogenic inducer 61 (CYR61), is a pivotal member of the CCN family, which comprises six secretory matricellular proteins. CCN1 exhibits multifaceted biological functions, including regulation of cell proliferation, differentiation, senescence, angiogenesis and tissue repair. Current evidence demonstrates that CCN1 activates intracellular signalling cascades by binding to receptors such as integrins and heparan sulphate proteoglycans (HSPGs), thereby mediating its biological effects.
View Article and Find Full Text PDF