Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The network organization of the human brain dynamically reconfigures in response to changing environmental demands, an adaptive process that may be disrupted in a symptom-relevant manner across psychiatric illnesses. Here, in a transdiagnostic sample of participants with (n=134) and without (n=85) psychiatric diagnoses, functional connectomes from intrinsic (resting-state) and task-evoked fMRI were decomposed to identify constraints on brain network dynamics across six cognitive states. Hierarchical clustering of 110 clinical, behavioral, and cognitive measures identified participant-specific symptom profiles, revealing four core dimensions of functioning: internalizing, externalizing, cognitive, and social/reward. Brain network dynamics were flattened across cognitive states in individuals with psychiatric illness and could be used to accurately separate dimensional symptom profiles more robustly than both case-control status and primary diagnostic grouping. A key role of inhibitory cognitive control and frontoparietal network interactions was uncovered through systematic model comparison. We provide novel evidence that brain network dynamics can accurately differentiate the extent that psychiatrically-relevant dimensions of functioning are exhibited across health and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12154617PMC
http://dx.doi.org/10.1101/2025.05.23.655864DOI Listing

Publication Analysis

Top Keywords

brain network
16
network dynamics
16
symptom profiles
12
psychiatric illness
8
health disease
8
cognitive states
8
dimensions functioning
8
brain
5
network
5
cognitive
5

Similar Publications

Functional PET (fPET) identifies stimulation-specific changes of physiological processes, individual molecular connectivity and group-level molecular covariance. Since there is currently no consistent analysis approach available for these techniques, we present a toolbox for unified fPET assessment. The toolbox supports analysis of data obtained with a variety of radiotracers, scanners, experimental protocols, cognitive tasks and species.

View Article and Find Full Text PDF

Maturational Changes in Action-Effect Integration Processes Are Reflected by Changes in the Directed Cortical Network Communication.

Hum Brain Mapp

September 2025

Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.

Acting intentionally is a major aspect of human cognitive development and depends on the ability to link actions with their consequences. Action-effect binding (AEB) is a fundamental mechanism enabling this. While AEB has been well-characterized in adults, its neurophysiological underpinnings during adolescence remain unclear.

View Article and Find Full Text PDF

Background: Microglia are brain resident cells that control neural network maintenance, damage healing, and brain development. Microglia undergo apoptosis, cytokine production, and reactive free radicals of oxygen (ROS) in response to lipopolysaccharide (LPS) stimulation. TRPM2 is activated by LPS-induced oxidative stress, but it is inhibited by carvacrol (CARV) and N-(p-amylcinnamoyl)anthranilic acid (ACA).

View Article and Find Full Text PDF

Network Pharmacology of miR-146a-5p as a Potential Anti-Inflammatory Agent in Preventing Alzheimer's Disease.

Curr Alzheimer Res

September 2025

School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia.

Introduction: Alzheimer's disease is expressed as chronic neuroinflammation in the brain, which results in neuronal dysfunction, aberrant protein folding, and declining cognitive abilities. miR-146a-5p is a potent anti-inflammatory agent that can be used to treat several inflammatory diseases, as well as promote wound healing. Our research aimed to utilize network pharmacology to elucidate the therapeutic potential of miR-146a-5p in treating Alzheimer's disease using a biocomputational approach.

View Article and Find Full Text PDF

Introduction: The complement receptor 1 (CR1) gene is identified as the one closely associated with Alzheimer's disease (AD). However, there has been no exploration of the imaging alterations associated with the CR1 gene in AD patients of the Han population. The purpose of this study is to investigate the association between the rs6656401 mutation and neuroimaging variations in Han AD patients.

View Article and Find Full Text PDF