98%
921
2 minutes
20
Despite its diverse therapeutic potential, (+)-nootkatone (NK) exhibits restricted oral bioavailability due to low water solubility and instability. This study addresses these challenges by developing Gliadin/Carboxymethyl chitosan (CMCS) composite nanoparticles as an NK delivery system. The preparation of NK-loaded Gliadin/CMCS composite nanoparticles employed an anti-solvent precipitation approach. Self-assembly facilitated NK encapsulation within Gliadin's hydrophobic regions, after which CMCS adhered to the nanoparticle surface through Gliadin-mediated electrostatic interactions, ultimately forming a multilayered NK encapsulation framework. The nanoparticles, created with a 4:1 gliadin to CMCS mass ratio, exhibited an average size of 224.4 nm, a zeta potential of -31.0 mV, and an NK encapsulation efficiency of 81.9 %. Microscopic analyses confirmed that Gliadin/CMCS-NK nanoparticles possess a spherical morphology. The encapsulation significantly enhanced the environmental stability, thermal robustness, and controlled release capabilities of NK. Additionally, gliadin and CMCS markedly improve free radical scavenging and anticancer activities, with improved controlled release observed during in vitro digestion. These findings suggest that Gliadin/CMCS nanoparticles effectively enhance the oral bioavailability and stability of bioactive compounds like NK, making them suitable for food applications and the development of functional foods and supplements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.145086 | DOI Listing |
J Phys Chem Lett
September 2025
Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China.
Heterostructures have emerged as promising contenders for surface-enhanced Raman scattering (SERS) applications. Nevertheless, the construction of a composite SERS substrate with well-matched energy levels persists as a challenge, primarily due to the restricted selection of SERS-active materials. In this study, we successfully synthesized a Ag nanoparticles (NPs)/ZnO nanorods (NRs)/GaN heterojunction featuring type II staggered energy bands, which provides an outstanding platform for efficient SERS detection.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, PR China. Electronic address:
Balancing antibacterial efficacy, mechanical integrity, and biocompatibility remains a critical challenge in drug release systems for wound dressings. Many antimicrobial agents exhibit inherent cytotoxicity, compromising cell viability and tissue compatibility. To address this, an Absorbable Gelatine Sponge was synthetised based on high-viscosity hydroxypropyl methylcellulose (HPMC K100M) and loaded with silver citrate nanorods (AgCit), which confine silver nanoparticles to enable controlled ion release.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China. Electronic address:
The development of effective hemostatic and antibacterial dressings remains a critical challenge in wound management. We report the design and fabrication of novel porous composite hydrogels composed of carboxymethyl cellulose (CMC), silica (SiO), and zinc oxide nanoparticles (ZnO NPs) . The incorporation of SiO and ZnO NPs into the CMC hydrogel matrix resulted in a unique multi-scale porous structure, characterized by interconnected holes of various sizes, which significantly enhanced the hydrogel's liquid absorption capacity and mechanical strength.
View Article and Find Full Text PDFAdv Colloid Interface Sci
September 2025
Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L8, Ontario, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton L8S 4L8, Ontario, Canada. Electronic address:
This review describes new strategies in the use of multifunctional organic alkalizers (OA) for the fabrication of advanced functional materials. OA facilitate solubilization and delivery of poorly solubilized drugs through the formation of drug-OA complexes and supramolecular gels. OA are applied for the synthesis of materials for biomedical, energy storage, catalytic, photovoltaic, sensor, and electronic applications.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2025
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA. Electronic address:
Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as powerful tools in nanomedicine owing to their heavy-metal-free composition, distinct magnetic properties, biocompatibility, and customizable surface chemistry. While traditionally employed as T-weighted MRI contrast agents, recent innovations have enabled the development of ultra-small SPIONs-such as exceedingly small SPIONs (ES-SPIONs) and single-nanometer iron oxide nanoparticles (SNIOs)-that offer T-weighted MRI capabilities, which are favored by radiologists for their superior anatomical clarity. This review highlights the synthesis of monodisperse SPIONs via thermal decomposition and controlled oxidation, as well as their functionalization with zwitterionic dopamine sulfonate (ZDS) ligands, which confer colloidal stability, minimal protein adsorption, and efficient renal clearance.
View Article and Find Full Text PDF