Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To probe the properties of single atoms is a challenging task, especially from the experimental standpoint, due to sensitivity limits. Nevertheless, it is sometimes possible to achieve this by making corresponding choices and adjustments to the experimental technique and sample under investigation. In the present case, the absolute value of the electronic charge the Fe atoms acquire when they are adsorbed on the surface of aluminum oxide α-AlO(0001) was measured by a set of surface-sensitive techniques: low-energy ion scattering (LEIS), Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and work function (WF) measurements, in combination with density functional theory (DFT) calculations. The main focus was the submonolayer coverage of Fe atoms in situ deposited on the well-ordered stoichiometric α-AlO(0001) 7 nm thick film formed on a Mo(110) crystal face. An analysis of the evolution of the Fe LVV Auger triplet upon variation of the Fe coverage shows that there is electronic charge transfer from Fe to alumina and that its value gradually decreases as the Fe coverage grows. The same trend is also predicted by the DFT results. Extrapolation of the experimental Fe charge value versus coverage plot yields an estimated value of a single Fe atom adsorbed on α-AlO(0001) of 0.98e (electron charge units), which is in reasonable agreement with the calculated value (+1.15e). The knowledge of this value and the possibility of its adjustment may be important points for the development and tuning of modern sub-nanometer-scale technologies of diverse applied relevance and can contribute to a more complete justification and selection of the corresponding theoretical models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12157106PMC
http://dx.doi.org/10.3390/nano15110804DOI Listing

Publication Analysis

Top Keywords

single atom
8
electronic charge
8
combined experimental
4
experimental dft
4
dft study
4
study alumina
4
alumina α-alo0001-supported
4
atoms
4
α-alo0001-supported atoms
4
atoms limit
4

Similar Publications

Multi-compartment diffusion-relaxation MR signal representation in the spherical 3D-SHORE basis.

Comput Biol Med

September 2025

Laboratorio de Procesado de Imagen (LPI), ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain. Electronic address:

Modelling the diffusion-relaxation magnetic resonance (MR) signal obtained from multi-parametric sequences has recently gained immense interest in the community due to new techniques significantly reducing data acquisition time. A preferred approach for examining the diffusion-relaxation MR data is to follow the continuum modelling principle that employs kernels to represent the tissue features, such as the relaxations or diffusion properties. However, constructing reasonable dictionaries with predefined signal components depends on the sampling density of model parameter space, thus leading to a geometrical increase in the number of atoms per extra tissue parameter considered in the model.

View Article and Find Full Text PDF

Developing single-atom catalysts (SACs) with dense active sites and universal synthesis strategies remains a critical challenge. Herein, we present a scalable and universal strategy to synthesize high-density transition metal single-atom sites, anchored in nitrogen-doped porous carbon (M-SA@NC, M = Fe, Co, Ni) and investigate their oxygen reduction reaction (ORR) catalytic activity for flexible Zn-air batteries (ZABs). Using a facile coordination-pyrolysis strategy, atomically dispersed M-N sites with high metal loading are achieved.

View Article and Find Full Text PDF

Kinetic and Mechanistic Discrepancies of Single/Dual-Atom Nanozymes Drive a Triple-Channel Sensing Array for Machine Learning-Assisted Antioxidant Discrimination.

Anal Chem

September 2025

Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China.

Current colorimetric sensing arrays for antioxidant detection often struggle with discrimination due to cross-reactive signals from individual nanozymes. These signals are typically modulated by external factors such as pH or chromogenic substrates, offering limited kinetic and mechanistic diversity. To overcome this, we present a novel triple-channel colorimetric sensing array utilizing two distinct single-atom nanozymes (Cu SA and Fe SA) and one dual-atom nanozyme (CuFe DA).

View Article and Find Full Text PDF

Achieving precise control of materials synthesis is a cornerstone of modern manufacturing, driving efficiency, functionality, and device innovation. This review examines the roles of transmission electron microscopy (TEM) and neutron scattering (NS) in advancing our understanding of these processes. TEM offers atomic-scale insights into nucleation, growth, and phase transitions, while NS provides an analysis of reaction pathways, phase evolution, and structural transformations over broader length scales.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) significantly impact air quality as photochemical smog precursors and health hazards. Catalytic oxidation is a leading VOC abatement method but suffers from catalyst deactivation due to metal sintering and competitive adsorption in complex mixtures. Strong metal-support interactions (SMSIs) provide atomic level control of interfacial electronic and geometric structures.

View Article and Find Full Text PDF