Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hypertrophic cardiomyopathy (HCM) is an autosomal-dominant disease caused by genetic variants in sarcomeric proteins, particularly in myosin binding protein C3 () and myosin heavy chain 7 (). Less known is that neonatal forms of HCM rapidly evolve into systolic heart failure and death within the first year of life. Although myosin inhibitors are now used to treat obstructive forms of adult HCM, there is still a need for novel therapeutic options and predictive animal models to assess them. Our aim was to model in pigs severe forms of human HCM carrying bi-allelic truncating mutations or heterozygous missense variants. Pigs were generated by CRISPR/Cas9 genome or cytosine-base editing in porcine fibroblasts combined with somatic cell nuclear transfer. Several pregnancies were established but piglets were non-viable. The -edited piglet exhibited a compound heterozygous mutation leading to a markedly low level of mutant MYBPC3 protein and cardiac hypertrophy, reflecting the situation in infants. The -edited piglets carried the heterozygous p.Arg453Cys variant and exhibited ventricular hypertrophy. In conclusion, and cloned piglets developed cardiac hypertrophy and died around birth, indicating that pigs are particularly sensitive to sarcomeric gene mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12151660PMC
http://dx.doi.org/10.1016/j.jmccpl.2025.100457DOI Listing

Publication Analysis

Top Keywords

hypertrophic cardiomyopathy
8
cardiac hypertrophy
8
perinatal death
4
death pig
4
pig models
4
models hypertrophic
4
cardiomyopathy carrying
4
carrying sarcomere
4
sarcomere pathogenic
4
pathogenic variants
4

Similar Publications

Apical hypertrophic cardiomyopathy (ApHCM) is an uncommon, nonobstructive form of hypertrophic cardiomyopathy (HCM) that is associated with an increased risk of ventricular aneurysms, atrial fibrillation, heart failure, and cardiac death. In this case report, a 63-year-old male patient was found to have deeply negative T waves on electrocardiogram (EKG) during a routine preoperative evaluation in an outpatient internal medicine clinic. Imaging with echocardiography and cardiac magnetic resonance confirmed the diagnosis of ApHCM.

View Article and Find Full Text PDF

Objective: This study sought to identify key prognostic factors in patients with hypertrophic cardiomyopathy (HCM) and heart failure with preserved ejection fraction (HFpEF), emphasizing the prognostic role of free triiodothyronine (FT3) levels.

Research Design And Methods: This retrospective cohort study enrolled 992 HCM-HFpEF patients from two Chinese medical centers between 2009 and 2019, excluding those with thyroid-affecting medications or disorders. Data on demographic and clinical variables, including FT3, were analyzed using univariate and multivariate Cox regression, Kaplan-Meier (KM) survival analysis, and restricted cubic spline (RCS) analysis to explore prognostic factors and FT3's nonlinear predictive value.

View Article and Find Full Text PDF

Abstract: Hypertrophic cardiomyopathy (HCM) is a common hereditary heart disease and is the leading cause of sudden cardiac death in adolescents. Septal hypertrophy (SH) and apical hypertrophy (AH) are two common types. The former is characterized by abnormal septal myocardial thickening and the latter by left ventricular apical hypertrophy, both of which significantly increase the risk of heart failure, arrhythmias, and other serious complications.

View Article and Find Full Text PDF

Objective: To evaluate the impact of CT planning on surgical myectomy outcomes in patients with hypertrophic cardiomyopathy (HCM) and left ventricular outflow tract (LVOT) and/or mid-cavity obstruction, by comparing these outcomes with those of conventional surgical myectomy.

Methods: This prospective cohort study included patients who underwent surgical septal myectomy for HCM with LVOT and/or mid-cavity obstruction between January 2019 and May 2024 at a single tertiary center. In the CT-planned myectomy group, an expert radiologist simulated the target myectomy site through a series of post-processing methods to plan the surgical approach, provide a surgeon's view that closely resembles the actual perspective in the operating room, and present the target myectomy volume.

View Article and Find Full Text PDF

The QT interval is a key indicator in assessing arrhythmia risk, evaluating drug safety, and supporting clinical diagnosis in cardiology. The QT interval is significantly influenced by heart rate so it must be accurately corrected to ensure reliable clinical interpretation. Conventional correction formulas, such as Bazett's formula, are widely utilized but often criticized for inaccuracies, either under- or overcorrecting QT intervals in different physiological conditions.

View Article and Find Full Text PDF