Publications by authors named "Eckhard Wolf"

Oxidative stress plays a central role in numerous conditions, including cancer, cardiovascular and neurodegenerative diseases, diabetes, chronic inflammation, and organ transplantation. In transplantation, oxidative stress leads to mitochondrial dysfunction, DNA and protein damage, lipid peroxidation, and activation of pro-inflammatory pathways such as NF-κB, ultimately impairing cell viability and organ function. A Kinase-Interacting Protein 1 (AKIP1) has been linked to oxidative stress regulation in transgenic mouse models.

View Article and Find Full Text PDF

Background: In previous studies, we showed that beta cell-specific overexpression of high-affinity variant of human CTLA-4 (LEA29Y), a high-affinity variant of cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)-immunoglobulin, prevented porcine islet rejection in humanized mouse models. We here investigate whether long-term xenograft function and survival is maintained after neutralization of LEA29Y-mediated co-stimulation blockade.

Methods: Diabetic humanized NOD-SCID IL2rγ-/- mice were transplanted with transgenic neonatal porcine islet-like clusters expressing LEA29Y under control of the porcine insulin promoter.

View Article and Find Full Text PDF

Acute tubular necrosis mediates acute kidney injury (AKI) and nephron loss, the hallmark of end-stage renal disease. For decades, it has been known that female kidneys are less sensitive to AKI. Acute tubular necrosis involves dynamic cell death propagation by ferroptosis along the tubular compartment.

View Article and Find Full Text PDF

Recent studies on myogenic satellite cells (SCs) in Duchenne muscular dystrophy (DMD) documented altered division capacities and impaired regeneration potential of SCs in DMD patients and animal models. It remains unknown, however, if SC-intrinsic effects trigger these deficiencies at pre-contractile stages of myogenesis rather than resulting from the pathologic environment. In this study, we isolated SCs from a porcine DMD model and age-matched wild-type (WT) piglets for comprehensive analysis.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is an autosomal-dominant disease caused by genetic variants in sarcomeric proteins, particularly in myosin binding protein C3 () and myosin heavy chain 7 (). Less known is that neonatal forms of HCM rapidly evolve into systolic heart failure and death within the first year of life. Although myosin inhibitors are now used to treat obstructive forms of adult HCM, there is still a need for novel therapeutic options and predictive animal models to assess them.

View Article and Find Full Text PDF

The only curative therapy for end-stage heart failure is orthotopic allogeneic heart transplantation. This therapy has extended the survival of patients worldwide but is limited due to the scarcity of donor organs. Potential alternative donor sources of organs for transplantation include genetically-modified (GM) large animal donors (ie, xenografts) and human organs developed in large animal hosts.

View Article and Find Full Text PDF

The pig is a valuable animal model in diabetes research; however, standardized protocols are essential for evaluating in vivo metabolism. Here, we present a protocol for in vivo assessment of glucose control and insulin secretion and sensitivity in the pig. We describe steps for catheter implantation, testing of intravenous glucose tolerance, performance of hyperinsulinemic-euglycemic clamps (HECs) and hyperglycemic clamps (HGCs), and blood processing.

View Article and Find Full Text PDF

Recent landmark clinical translation of xenotransplantation depended upon multiple innovations by the xenotransplant community, including the introduction of a variety of source pig genetic modifications, technical innovations, and novel immunosuppressive strategies, as well as the development of ethical and regulatory frameworks to support translation to the clinic. Each organ, tissue, or cell type intended for xenotransplantation will require application-specific preclinical milestones to be met in order to predict "success", as measured by ethical, safe, and efficacious translation to the clinic. Based on successful pre-clinical results and emerging evidence from decedent studies and initial clinical cases, evidence-based infectious disease, ethical, and regulatory considerations are emerging, and will be the foundations for the application-specific position papers that are currently under development.

View Article and Find Full Text PDF

Recent landmark clinical translation of xenotransplantation depended upon multiple innovations by the xenotransplant community, including the introduction of a variety of source pig genetic modifications, technical innovations, and novel immunosuppressive strategies, as well as the development of ethical and regulatory frameworks to support translation to the clinic. Each organ, tissue, or cell type intended for xenotransplantation will require application-specific preclinical milestones to be met in order to predict "success", as measured by ethical, safe, and efficacious translation to the clinic. Based on successful pre-clinical results and emerging evidence from decedent studies and initial clinical cases, evidence-based infectious disease, ethical, and regulatory considerations are emerging, and will be the foundations for the application-specific position papers that are currently under development.

View Article and Find Full Text PDF

Porcine kidney xenotransplantation for end-stage renal disease (ESRD) has reached the stage of clinical testing following major advances in donor pig genetic modifications and effective immunosuppressive strategies through decades of rigorous translational research. Reports of pig kidney xenograft survival beyond 1 year posttranplant in nonhuman primate (NHP) models justify optimism for its potential as an alternative to allotransplantation. In the United States, experimental transplantations of genetically engineered (GE) porcine kidneys into brain-dead subjects and a small number of ESRD patients have shown no evidence of hyperacute rejection and adequate pig kidney function for up to several months.

View Article and Find Full Text PDF

Porcine kidney xenotransplantation for end-stage renal disease (ESRD) has reached the stage of clinical testing following major advances in donor pig genetic modifications and effective immunosuppressive strategies through decades of rigorous translational research. Reports of pig kidney xenograft survival beyond 1 year post-transplant in nonhuman primate (NHP) models justify optimism for its potential as an alternative to allotransplantation. In the United States, experimental transplantations of genetically engineered (GE) porcine kidneys into brain-dead subjects and a small number of ESRD patients have shown no evidence of hyperacute rejection and adequate pig kidney function for up to several months.

View Article and Find Full Text PDF

The engraftment of transplanted islets depends on the rapid establishment of a novel vascular network. The present study evaluated the effects of cord blood-derived blood outgrowth endothelial cells (BOECs) on the viability of neonatal porcine islets (NPIs) and the post-transplant outcome of grafted NPIs. Dispersed NPIs and human BOECs were reaggregated on microwell cell culture plates and tested for their anti-apoptotic and pro-angiogenic capacity by qRT-PCR and immunohistochemistry.

View Article and Find Full Text PDF

Advances in understanding the mechanisms behind genetic diseases like Duchenne muscular dystrophy (DMD) underscore the critical role of the extracellular matrix (ECM) composition in disease progression. Effective in vitro models must replicate the intercellular relationships and physicochemical properties of native ECM to fully capture disease-specific characteristics. Although recent biomaterials support the in vitro biofabrication of pathophysiological environments, they often lack disease-specific ECM features.

View Article and Find Full Text PDF

Signaling networks can be used to describe the dynamic interplay of hormonal and mechanical factors that regulate heart growth. However, a qualitative analysis of signaling networks is often difficult due to their complexity and nonlinear behavior. In this work, a global sensitivity analysis of signaling networks is conducted to determine the most influential factors for heart growth over a range of model inputs.

View Article and Find Full Text PDF

In patients with cystic fibrosis (CF), repeated cycles of infection and inflammation eventually lead to fatal lung damage. Although diminished mucus clearance can be restored by highly effective CFTR modulator therapy, inflammation and infection often persist. To elucidate the role of the innate immune system in CF etiology, we investigated a CF pig model and compared these results with those for preschool children with CF.

View Article and Find Full Text PDF

Transcriptional activation of the embryonic genome (EGA) is a major developmental landmark enabling the embryo to become independent from maternal control. The magnitude and control of transcriptional reprogramming during this event across mammals remains poorly understood. Here, we developed Smart-seq+5' for high sensitivity, full-length transcript coverage and simultaneous capture of 5' transcript information from single cells and single embryos.

View Article and Find Full Text PDF

Aldosterone-producing adenomas (APAs) are a major cause of primary aldosteronism, a common form of endocrine hypertension. Here, we demonstrate that Early Growth Response 1 (EGR1) plays a dual role in adrenal cell biology, regulating both oxidative stress and aldosterone production. Using RNA sequencing of RSL3-treated human adrenal cells and spatial transcriptomics of adrenal glands from patients with primary aldosteronism, we identify EGR1 as a key gene associated with RSL3-related oxidative stress and APAs.

View Article and Find Full Text PDF

Xenotransplantation of porcine organs has made remarkable progress towards clinical application. A key factor has been the generation of genetically multi-modified source pigs for xenotransplants, protected against immune rejection and coagulation dysregulation. While efficient gene editing tools and multi-cistronic expression cassettes facilitate sophisticated and complex genetic modifications with multiple gene knockouts and protective transgenes, an increasing number of independently segregating genetic units complicates the breeding of the source pigs.

View Article and Find Full Text PDF

Background: Aldosterone-producing adenomas (APAs) are a common cause of primary aldosteronism that can lead to cardiovascular complications if left untreated. Machine learning-based bioinformatics approaches have emerged as powerful tools for identifying potential disease markers, gaining widespread recognition in biomedical research. We aimed to use machine learning to discover novel biomarkers of APAs to identify new pathophysiological mechanisms.

View Article and Find Full Text PDF

Background: Pleural effusions develop frequently after cardiac surgery in humans. Lung ultrasound is an essential non-invasive tool in the diagnosis and treatment of these effusions. Pleural effusions also develop regularly after preclinical cardiac xenotransplantation experiments.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) predisposes to cardiac remodeling and coronary microvascular dysfunction. Studies in swine identified changes in microvascular structure and function, as well as changes in mitochondrial structure and oxidative stress. However, CKD was combined with metabolic derangement, thereby obscuring the contribution of CKD alone.

View Article and Find Full Text PDF