98%
921
2 minutes
20
In contrast to high-concentration electrolyte systems, low-concentration electrolytes provide a cost-effective strategy to advance the commercialization of aqueous zinc-ion batteries (AZIBs). However, such electrolytes frequently exhibit severe dendrite formation caused by localized Zn concentration gradients, which critically compromise the cycling stability and operational safety of AZIBs. In this work, an innovative approach is proposed that involves the in situ construction of a fluoride-ion (F) enriched interfacial layer on zinc anodes. This method facilitates in-plane diffusion of zinc ions at the anode interface, resulting in accelerated lateral growth of zinc deposits rather than dendritic formation. The results indicate that this orientated growth is closely associated with an anionic layer that effectively reduces random and irregular deposition as well as undesirable side reactions. The proposed system exhibits exceptional electrochemical performance within a low-concentration electrolyte framework, achieving a battery lifespan exceeding 1500 h at a current density of 2 mA cm. Furthermore, it maintains Coulombic efficiency above 99% after 800 h of cycling. Additionally, the NaVO·3HO (NVO)//Zn full battery incorporating this additive showcases enhanced long-term cycling performance and improved capacity retention, further confirming the excellent reversibility of the plating/stripping processes for zinc anode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202503153 | DOI Listing |
Chem Commun (Camb)
September 2025
Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
Herein, 1,3,5-benzenetricarboxylate (BTC) intercalation and oxygen vacancy engineering are proposed to enhance the electrochemical performance of layered double hydroxide (LDH) nanosheets. The optimized LDH exhibits a remarkable capacity of 426 mAh g at 3 A g and 70% capacity retention after 15 000 cycles, attributed to improved ion transport, abundant active sites, and structural stability.
View Article and Find Full Text PDFACS Electrochem
September 2025
Department of Material Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Bipolar membranes (BPMs) are increasingly recognized as a promising electrolyte option for water electrolysis, attributable to their distinctive properties derived from the membrane's layered structure, which consists of an anion exchange (AEL) and a cation exchange layer (CEL). This study investigates four different BPMs and the influence they have on the performance of a water electrolysis cell under two different feed configurations: (1) a symmetric deionized water feed to both anode and cathode compartments and (2) an asymmetric feed with a 0.5 mol/L NaCl catholyte feed and a deionized water anolyte feed.
View Article and Find Full Text PDFDalton Trans
September 2025
Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics & Chemistry, CAS, Urumqi 830011, China.
Three novel tellurate halides CdTeOX (X = Cl, Br, I) were rationally designed by introducing planar [TeO] into the binary anionic compounds, and synthesized by the flux method in sealed systems. The compounds crystallize in the centrosymmetric 2/ space group and show a layered 3D structure built by pyramid-shaped [CdOX] (X = Cl, Br, I), octahedral [CdO], and triangular [TeO] units. The compounds belong to a new emerging oxyhalide family, AII5BIV4OII12XI2, and the pseudo-ternary phase diagram of the CdO-TeO-CdX system is provided.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
Topochemical reduction of the n = 2 Ruddlesden-Popper oxide, LaSrCoRuO, yields LaSrCoRuO, a phase containing (Co/Ru)O squares which share corners to form 1D infinite double-chains. In contrast, fluorination of LaSrCoRuO yields the oxyfluoride LaSrCoRuOF, which can then be reduced to form LaSrCoRuOF. This reduced oxyfluoride is almost isoelectronic with LaSrCoRuO, but LaSrCoRuOF has a crystal structure in which the (Co/Ru)O squares are connected into 2D infinite sheets.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
Li-metal batteries promise ultrahigh energy density, but their application is limited by Li-dendrite growth. Theoretically, fluorine-containing anions such as bis(fluorosulfonyl)imide (FSI) in electrolytes can be reduced to form LiF-rich solid-electrolyte interphases (SEIs) with high Young's modulus and ionic conductivity that can suppress dendrites. However, the anions migrate toward the cathode during the charging process, accompanied by a decrease in the concentration of interfacial anions near the anode surface.
View Article and Find Full Text PDF