Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Through the analysis of multidimensional vibration signals of machinery, existing faults in mechanical equipment can be timely identified to ensure normal equipment operation. In biological nervous systems, noise influences the generation, transmission, and response of neural signals, causing these signals to exhibit diverse dynamic behaviors. Inspired by this mechanism, to improve fault diagnosis accuracy, this study investigates the advantages of stochastic resonance effects in discharge neural networks and proposes an adaptive cluster discharge resonance neuron (CDRN) model. This model enhances characteristic frequency extraction capability for bearing fault vibration signals. In addition, by embedding a multi-dimensional neuron model into the CDRN framework, the limitation of one-dimensional signals being vulnerable to complex noise interference and false detection is overcome. Using the output signal-to-noise ratio and neural network classifier recognition rate as evaluation metrics, the detection performance of the CDRN method is compared with the single one-dimensional stochastic resonance (SOSR) method and the single hyperbolic tangent neuron (SHTN) method for early-stage mechanical fault detection in wind turbine bearing inner and outer rings. In the two experiments, the fault detection rate of the CDRN method reaches 100%. Experimental results demonstrate that the CDRN method outperforms both SOSR and SHTN in mechanical fault feature recognition and significantly improves early fault detection accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0265446DOI Listing

Publication Analysis

Top Keywords

vibration signals
12
cdrn method
12
fault detection
12
cluster discharge
8
discharge resonance
8
resonance neuron
8
neuron model
8
fault vibration
8
stochastic resonance
8
mechanical fault
8

Similar Publications

Glycolipids are key structural and functional components of biological membranes, yet their interfacial hydration behavior remains poorly understood. Here, we use vibrational heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy to probe the molecular structure of the air-water interface formed by monolayers of ohmline, a glycolipid bearing a lactose headgroup and carrying no formal charge. Upon electrolyte addition, we observe a striking reorientation of interfacial water and a reversal of the HD-SFG signal, indicative of apparent surface charging by an otherwise neutral headgroup.

View Article and Find Full Text PDF

Reverberation cues underlying virtual auditory distance perception for a frontal source.

J Acoust Soc Am

September 2025

ENTPE, Ecole Centrale de Lyon, CNRS, LTDS, UMR5513, 69518 Vaulx-en-Velin, France.

This study investigated the potential role of temporal, spectral, and binaural room-induced cues for the perception of virtual auditory distance. Listeners judged the perceived distance of a frontal source simulated between 0.5 and 10 m in a room via headphones, with eyes closed in a soundproof booth.

View Article and Find Full Text PDF

The demand for rapid, field-deployable detection of hazardous substances has intensified the search for plasmonic sensors with both high sensitivity and fabrication simplicity. Conventional approaches to plasmonic substrates, however, often rely on lithographic precision or complex chemistries limiting scalability and reproducibility. Here, a facile, one-step synthesis of vertically aligned 2D nanosheets composed of intergrown CuO/CuO crystallites is presented, fabricated via oxygen plasma discharge on copper substrates.

View Article and Find Full Text PDF

Vibrational signature of 1B+u and hot 2A-g excited states of carotenoids revisited by femtosecond stimulated Raman spectroscopy.

Phys Chem Chem Phys

September 2025

The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany, Czech Republic.

The significance of carotenoids in biological systems cannot be overstated. Their functionality largely arises from unique excited-state dynamics, where photon absorption promotes the molecule to the optically allowed 1B+u state (conventionally S), which rapidly decays to the optically forbidden 2A-g state (S). While the vibrational signature of the S state is well established, that of the initial S state has remained elusive.

View Article and Find Full Text PDF

Sum-frequency generation vibrational spectroscopy (SFG-VS) has been well-established as a unique spectroscopic probe to interrogate the structure, interaction, and dynamics of molecular interfaces, with sub-monolayer sensitivity and broad applications. Sub-1 cm-1 High-Resolution Broadband SFG-VS (HR-BB-SFG-VS) has shown advantages with high spectral resolution and accurate spectral line shape. However, due to the lower peak intensity for the long picosecond pulse used in achieving sub-wavenumber resolution in the HR-BB-SFG-VS measurement, only molecular interfaces with relatively strong signal have been studied.

View Article and Find Full Text PDF