Lactate-Activated GPR132-Src Signal Induces Macrophage Senescence and Aggravates Atherosclerosis Under Diabetes.

Adv Sci (Weinh)

Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Fujian Branch of National Clinical Research Center for Cardiovascular Diseases, Xiamen University, Xiamen, 361016, China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diabetes is widely acknowledged as a significant risk factor for atherosclerosis, facilitating plaque formation through various mechanisms. Although both conditions are linked to the aging process, the relationship among cellular senescence, diabetes, and atherosclerosis remains inadequately understood. This study presents evidence that elevated glucose levels expedite the progression of atherosclerosis by promoting macrophage senescence. Increased glucose levels are shown to induce senescence in macrophages, which enhances the uptake of oxidized low-density lipoprotein (ox-LDL) and facilitates the formation of foam cells. This mechanism is driven by lactate production via glycolysis, which activates the lactate receptor GPR132, thereby promoting macrophage senescence. The activation of GPR132 is implicated in mediating senescence and lipid uptake through Src phosphorylation. The deletion of GPR132 markedly reduces macrophage senescence and atherosclerosis in mouse models. Furthermore, saracatinib, a specific Src inhibitor, has been demonstrated to effectively alleviate diabetic atherosclerosis in experimental settings. In clinical samples, elevated plasma lactate levels and the activation of the GPR132-Src pathway in peripheral blood mononuclear cells (PBMCs) are positively associated with coronary stenosis. These findings propose a potential mechanism through which diabetes accelerates atherosclerosis via the lactate-GPR132-Src pathway, underscoring macrophage senescence as a pivotal target in the context of diabetic atherosclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412570PMC
http://dx.doi.org/10.1002/advs.202500141DOI Listing

Publication Analysis

Top Keywords

macrophage senescence
20
senescence
8
atherosclerosis
8
glucose levels
8
promoting macrophage
8
diabetic atherosclerosis
8
macrophage
5
lactate-activated gpr132-src
4
gpr132-src signal
4
signal induces
4

Similar Publications

Background: Individuals born after intrauterine growth restriction (IUGR) have a higher risk of developing metabolic syndrome (MetS) in adulthood. In a rat model, male IUGR offspring exhibit MetS features-including elevated systolic blood pressure, glucose intolerance, non-alcoholic fatty liver disease, and increased visceral adipose tissue (VAT)-by 6 months of age. Female offspring, however, do not.

View Article and Find Full Text PDF

GLP-1R activation restores Gas6-driven efferocytosis in senescent foamy macrophages to promote neural repair.

Redox Biol

September 2025

Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Medical School of Nantong University, Nantong, Jiangsu, 226000, China; Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu, 226000, China. Elec

Spinal cord injury (SCI) is a devastating condition characterized by the accumulation of myelin debris (MD), persistent neuroinflammation, and impaired neural regeneration. Although macrophages are pivotal for MD clearance, the impact of excessive MD phagocytosis on macrophage phenotype and function remains poorly understood. Building upon our prior evidence that exendin-4 (Ex-4), a glucagon-like peptide-1 receptor (GLP-1R) agonist, mitigates microglia-driven neuroinflammation post-SCI, this study elucidates the therapeutic efficacy and underlying mechanisms of Ex-4 in alleviating macrophage senescence, restoring efferocytotic capacity, and facilitating neural repair.

View Article and Find Full Text PDF

Cellular senescence is a critical factor in organismal aging and age-related diseases. Nicotinamide adenine dinucleotide (NAD) has been shown to be closely related to the cellular senescence process and holds potential as a senotherapeutic agent. However, its clinical application has been hindered by challenges such as its inability to be directly absorbed by cells, instability, and lack of targeting specificity.

View Article and Find Full Text PDF

Divergent Hepatic and Adipose Tissue Effects of Kupffer Cell Depletion in a Male Rat Model of Metabolic-Associated Steatohepatitis.

Biology (Basel)

August 2025

Laboratorio de Endocrinología Molecular (LEM), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Paraguay 2155, 5th Floor, Buenos Aires C1121ABG, Argentina.

Kupffer cells (KCs) play a pivotal role in the progression of metabolic-associated steatohepatitis (MASH). This study evaluated the impact of short-term KC depletion induced by gadolinium chloride (GdCl) in a rat model of MASH. The intervention with GdCl effectively reduced KC markers CD68 and Clec4f, together with pro-inflammatory cytokines (IL-1β, TNFα, NOS2), without affecting anti-inflammatory markers (IL-10, MRC1).

View Article and Find Full Text PDF

Cellular systems responsible for the formation and removal of reactive oxygen species (ROS), functioning within physiological limits, are essential for maintaining intracellular redox balance. This state is known as oxidative eustress. Key redox signaling molecules, such as superoxide anion radical (O) and hydrogen peroxide (HO), operate at nanomolar concentrations and are produced by NADPH oxidases (regulated by various factors), the mitochondrial electron transport chain (ETC), and numerous enzymes.

View Article and Find Full Text PDF