Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Aphid wing dimorphism is a textbook example of transgenerational phenotypic plasticity, but the signaling mechanism from mother to daughter remains unclear. We showed that the physical contact and crowding treatment caused high proportion of winged offspring in the pea aphid . RNA sequencing (RNA-seq) analysis indicated that the expression of brain () and embryonic () were increased by physical contact and crowding treatments. Knockdown of either gene inhibited phosphorylation of ApFoxO in embryos. Furthermore, electrophoretic mobility shift assays (EMSA) showed that dephosphorylated ApFoxO directly bound to the promotor of () to repress its transcription in stage 20 embryos, causing a lower winged proportion. Our results demonstrated that brain and embryonic coordinately relayed the maternal physical contact signals and control wing development in offspring, showcasing a regulatory mechanism underlying physical contact-dependent, transgenerational wing dimorphism in aphids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145829 | PMC |
http://dx.doi.org/10.1016/j.isci.2025.112591 | DOI Listing |