98%
921
2 minutes
20
In diabetic patients, hyperglycemia-induced elevated reactive oxygen species (ROS) accumulation severely impairs chronic wound healing by causing cellular component oxidation, inducing DNA damage, triggering cell death, exacerbating inflammatory responses, disrupting vascular endothelial function, reducing local blood supply, and inhibiting angiogenesis. This cascade results in a vicious cycle that delays the healing process. In this study, we developed a novel multifunctional composite dressing by depositing a transition-metal catalytic coating onto a superhydrophobic polydimethylsiloxane layer via magnetron sputtering. Two coatings were developed based on vanadium-ruthenium-boron (VRuB) intermetallic and VRu intermetallic compounds, which functioned as intermetallic compounds and exhibited various enzyme-like activities. The VRuB coating exhibited particularly prominent catalase-like activity (maximal reaction velocity (V) of 48.53 × 10 M s; turnover number of 7.66 s). Experimental characterizations and theoretical calculations revealed that B incorporation significantly improved catalytic performance. The artificial enzyme spray-coating process retained superhydrophobicity at the wound-contacting interface while enhancing the ROS-scavenging capabilities. Biological experiments demonstrated that the coating exhibited excellent biocompatibility and effective ROS-scavenging characteristics. These benefits were attributed to its synergistic properties, including its anti-adhesion characteristics, unidirectional drainage, moisturizing effects, and ROS elimination, which collectively promoted wound healing, especially for diabetic wound healing. The material showed promise for other applications requiring localized ROS scavenging while maintaining interfacial biomechanical properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140961 | PMC |
http://dx.doi.org/10.1016/j.mtbio.2025.101840 | DOI Listing |
Injury
September 2025
Washington University School of Medicine, Department of Orthopaedic Surgery, St. Louis, MO, USA. Electronic address:
Introduction: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly prescribed for Type 2 diabetes and obesity due to their cardiometabolic benefits. However, their effects on fracture healing remain controversial. This study investigates perioperative GLP-1 RA use and outcomes following surgical treatment of lower extremity (LE) fractures.
View Article and Find Full Text PDFInflamm Bowel Dis
September 2025
Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom.
Background: Intestinal cells receive incoming signals from neighboring cells and microbial communities. Upstream signaling pathways transduce these signals to reach transcription factors (TFs) that regulate gene expression. In inflammatory bowel disease (IBD), most single nucleotide polymorphisms (SNPs) are in non-coding genomic regions containing TF binding sites.
View Article and Find Full Text PDFJ Invest Dermatol
September 2025
Department of Surgery, University of California San Diego, La Jolla, CA, United States; Department of Dermatology, University of California San Diego, La Jolla, CA, United States. Electronic address:
Normal cutaneous wound healing is a multicellular process that involves the release of small extracellular vesicles (sEVs) that coordinate intercellular communication by delivery of sEV payloads to recipient cells. We have recently shown how the pro-reparative activity of inflammatory cell sEVs, especially macrophage and neutrophil-derived sEVs, in the wound bed is dysregulated in impaired wound healing. Here we show that loss of Rab27A, a small GTPase that has a regulatory function in sEV secretion, reduces the release of neutrophil and macrophage-derived sEVs.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, China. Electronic address:
Wound healing is often hindered by bacterial infection, oxidative stress, and bleeding. Traditional dressings cannot simultaneously regulate multiple microenvironments. To address the shortcomings of traditional dressings, this study constructed a dual-network photothermal responsive multifunctional hydrogel OBCTCu based on four natural ingredients, including Bletilla striata polysaccharide (BSP), chitosan (CS), tannic acid (TA), and Cu.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Chemical Engineering, Sichuan University, Chengdu, 610065, PR China. Electronic address:
Conventional wound dressings primarily focus on biochemical regulation, often neglecting the potential benefits of mechanical cues in tissue regeneration. We report a Janus hydrogel (QPJ hydrogel) that synergistically integrates biochemical modulation with temperature-responsive mechanical contraction for advanced chronic wound management. The hydrogel is constructed from quaternary ammonium chitosan (QCS) and N-isopropylacrylamide (NIPAM), with an outer PNIPAM layer that generates a directional contractile stress >25 kPa at physiological temperature.
View Article and Find Full Text PDF