Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, the structural, electronic, and optical properties of pristine and doped two-dimensional germanene quantum dots (GeQDs) were systematically investigated using first-principles calculations based on density functional theory (DFT). The model systems consist of monolayer GeQDs comprising 37 Ge atoms with hydrogen-passivated edges, including pristine, carbon-doped, and silicon-doped configurations. All structures are found to be dynamically stable, exhibit non-magnetic metallic behavior, and show distinctive structural modifications upon doping. Notably, carbon doping significantly reduces the buckling height of the quantum dots due to its smaller atomic radius and higher electronegativity. Multi-orbital hybridization analysis reveals substantial changes in electronic orbital interactions, particularly in the Si-doped structure. Charge density difference analysis indicates that carbon atoms act as charge acceptors, while silicon atoms donate charge to the surrounding Ge lattice. Optical property calculations show strong anisotropic absorption behavior, with all configurations demonstrating pronounced absorption in the ultraviolet region and moderate absorption in the visible range. These findings suggest that pristine and doped GeQDs hold promise for applications in nanoscale electronic and optoelectronic devices, including ultraviolet photodetectors, plasmonic components, and next-generation integrated circuits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143199PMC
http://dx.doi.org/10.1039/d5ra03236aDOI Listing

Publication Analysis

Top Keywords

quantum dots
12
germanene quantum
8
pristine doped
8
investigation si-doped
4
si-doped germanene
4
dots potential
4
potential nanotechnology
4
nanotechnology applications
4
applications study
4
study structural
4

Similar Publications

High Current Gain Endowed by Heterojunction Engineering Coupling Interfacial Molecular Modulation: A Low-Ascorbic Acid-Dependent Organic Photoelectrochemical Transistor Aptasensing Platform.

Anal Chem

September 2025

School of Agricultural Engineering, Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.

To balance the "detection sensitivity" and "device stability" of the organic photoelectrochemical transistor (OPECT) aptasensors, it has become an urgent challenge for achieving effective signal modulation under low ascorbic acid (AA) conditions. To address this, our work proposed a collaborative optimization strategy by coupling heterojunction engineering with interfacial molecular modulation, to endow a high current gain of OPECT with low-AA -dependence. First, a CdZnS-SnInS heterojunction gate was constructed by in situ growth of CdZnS quantum dots (QDs) on SnInS nanoflowers, which enhanced the light trapping ability and photoelectric conversion efficiency of the photoactive gate.

View Article and Find Full Text PDF

Photothermal/GSH-dual-responsive organic quantum dots enabling traceable DNA delivery.

Int J Biol Macromol

September 2025

School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China. Electronic address:

Quantum dots, with their superior intrinsic fluorescence and photostability, are emerging as a promising option for cancer gene therapy, diagnosis, and imaging. However, low gene delivery efficiency, insufficient targeting, and responsiveness remain challenges. To address these issues, PEI-based carbon quantum dots (CPNCs) were constructed by crosslinking polyethylenimine quantum dots (PQDs) with carbon quantum dots (CQDs) via disulfide bonds.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles - From synthesis to nanomedicine.

Biochem Biophys Res Commun

August 2025

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA. Electronic address:

Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as powerful tools in nanomedicine owing to their heavy-metal-free composition, distinct magnetic properties, biocompatibility, and customizable surface chemistry. While traditionally employed as T-weighted MRI contrast agents, recent innovations have enabled the development of ultra-small SPIONs-such as exceedingly small SPIONs (ES-SPIONs) and single-nanometer iron oxide nanoparticles (SNIOs)-that offer T-weighted MRI capabilities, which are favored by radiologists for their superior anatomical clarity. This review highlights the synthesis of monodisperse SPIONs via thermal decomposition and controlled oxidation, as well as their functionalization with zwitterionic dopamine sulfonate (ZDS) ligands, which confer colloidal stability, minimal protein adsorption, and efficient renal clearance.

View Article and Find Full Text PDF

Proposed Five-Electron Charge Quadrupole Qubit.

Phys Rev Lett

August 2025

University of Maryland Baltimore County, Department of Physics, Baltimore, Maryland 21250, USA.

A charge qubit couples to environmental electric field fluctuations through its dipole moment, resulting in fast decoherence. We propose the p-orbital (pO) qubit, formed by the single-electron, p-like valence states of a five-electron Si quantum dot, which couples to charge noise through the quadrupole moment. We demonstrate that the pO qubit offers distinct advantages in quality factor, gate speed, readout, and size.

View Article and Find Full Text PDF

This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.

View Article and Find Full Text PDF