Alternative digestion strategy for Ti, Zr and Hf oxides: eliminating hydrofluoric acid.

Anal Methods

Laboratory for Nanomaterials in Health, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Group IV metal oxides have a broad impact on the environment and human health due to their diverse applications in industry, consumer products and biomedicine. However, their chemical inertness poses significant challenges for accurate quantification in biological matrices, which is essential for assessing biodistribution, toxicity, and regulatory compliance. Traditional digestion methods often rely on hydrofluoric acid (HF), a hazardous reagent requiring specialized handling and infrastructure. Here, we present an alternative, HF-free microwave assisted digestion protocol for group IV metal oxides in biological contexts, utilizing sulfuric acid/water/hydrogen peroxide mixtures to achieve complete solubilization across nano-to microscale particles. The method's efficacy was evaluated on various commercially available TiO, ZrO, and HfO powders. Optimization of digestion parameters, including acid-to-peroxide ratios, temperature, and reaction time, led to recoveries exceeding 90% for all tested materials. Notably, higher temperatures and extended digestion times were required for larger particles and higher atomic number oxides, reflecting the increased metal-oxygen bond dissociation energies. The method's applicability was further demonstrated through successful quantification of spiked nanoparticles in human cancer cells and bovine liver tissue, with detection limits down to ∼1 ppb and achieving recoveries within 80-100%, maintaining sample stability over four weeks. Comparative analysis with HF-based digestion revealed comparable sensitivity and detection limits using inductively coupled plasma optical emission spectrometry (ICP-OES), with the HF-free method offering a safer and more accessible alternative for routine laboratory analysis. This validated protocol facilitates accurate quantification of group IV metal oxides in complex biological matrices, supporting preclinical and clinical studies while mitigating the risks associated with HF usage.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5ay00731cDOI Listing

Publication Analysis

Top Keywords

group metal
12
metal oxides
12
hydrofluoric acid
8
accurate quantification
8
biological matrices
8
detection limits
8
oxides
5
digestion
5
alternative digestion
4
digestion strategy
4

Similar Publications

Rational Design and Applications of Ultrasmall Gold Nanoparticles.

Top Curr Chem (Cham)

September 2025

Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates.

Controlling the size of gold nanoparticles (AuNPs) has been critical in diagnostics, biomolecular sensing, targeted therapy, wastewater treatment, catalysis, and sensing applications. Ultrasmall AuNPs (uAuNPs), with sizes Ranging from 2 to 5 nm, and gold nanoclusters (AuNCs), with sizes less than 2 nm, are often dealt with interchangeably in the literature, making it challenging to review them separately. Although they are grouped in our discussion, their chemical and physical properties differ significantly, partly due to their electronic properties.

View Article and Find Full Text PDF

Same-group element replacement enhances superconductivity in clathrate-like YH4.

J Chem Phys

September 2025

State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

H3S, LaH10, and hydrogen-based compounds have garnered significant interest due to their high-temperature superconducting properties. However, the requirement for extremely high pressures limits their practical applications. In this study, YH4 is adopted as a base material, with partial substitution of yttrium (Y) by scandium (Sc), lanthanum (La), and zirconium (Zr).

View Article and Find Full Text PDF

Methanesulfonate salts have garnered interest as candidates for optical crystals; however, there are relatively little empirical data to thoroughly understand their structure-property relationships. Furthermore, there is only one trivalent main group methanesulfonate reported in the solid state, Al(HO)(SOCH). We report the synthesis and characterization of four new trivalent methanesulfonates, such as () Y(SOCH), () Bi(SOCH), () In(SOCH)(HO), and () SbO(OH)(SOCH).

View Article and Find Full Text PDF

Levetiracetam-Assisted Perovskite Crystallization and Tripartite Lead Iodide Reduction in Perovskite Solar Cells.

Adv Mater

September 2025

Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.

Sequential deposition technique is widely used to fabricate perovskite films with large grain size in perovskite solar cells (PSCs). Residual lead halide (PbI) in the perovskite film tends to be decomposed into metallic lead (Pb) under long-term heating or light soaking. Here, a chiral levetiracetam (LEV) dopant containing α-amide and pyrrolidone groups is introduced into the PbI precursor solution.

View Article and Find Full Text PDF

Positional cranial deformities are frequently observed in early infancy. The lack of a clinically proven measure to quantify the severity and change of positional cranial deformities makes the treatment of cranial deformities controversial. The use of anthropometric measurements is a recommended method.

View Article and Find Full Text PDF