Publications by authors named "Alexander Gogos"

Magnetic separation of magnetic particles offers an appealing route to rapid and selective target capturing and isolation. However, to leverage such an approach to its full potential, high colloidal stability of the nanoparticles in the absence of a magnetic field for optimal binding, and rapid and quantitative recovery upon magnetic gradient field application are imperative. While these properties are mutually exclusive for conventional nanoparticles synthesized by wet-chemistry approaches, sputter deposition gives access to layered architectures featuring the properties of a synthetic antiferromagnet (SAF, no magnetization in zero field, high magnetization upon field application).

View Article and Find Full Text PDF

Group IV metal oxides have a broad impact on the environment and human health due to their diverse applications in industry, consumer products and biomedicine. However, their chemical inertness poses significant challenges for accurate quantification in biological matrices, which is essential for assessing biodistribution, toxicity, and regulatory compliance. Traditional digestion methods often rely on hydrofluoric acid (HF), a hazardous reagent requiring specialized handling and infrastructure.

View Article and Find Full Text PDF

Cyclic poly(2-methyl-2-oxazine) (-PMOZI) brush shells on Au nanoparticles (NPs) exhibit enhanced stealth properties toward serum and different cell lines compared to their linear PMOZI (-PMOZI) counterparts. While selectively recruiting immunoglobulins, -PMOZI shells reduce overall human serum (HS) protein binding and alter the processing of complement factor 3 (C3) compared to chemically identical linear shells. Polymer cyclization significantly decreases NP uptake by nonphagocytic cells and macrophages in both complement-deficient fetal bovine serum (FBS) and complement-expressing HS, indicating ineffective functional opsonization.

View Article and Find Full Text PDF

Nanoparticle radioenhancement offers a promising strategy for augmenting radiotherapy by locally increasing radiation damage to tumor tissue. While past research has predominantly focused on nanomaterials with high atomic numbers, such as Au and HfO, recent work has revealed that their radioenhancement efficacy decreases considerably when using clinically relevant megavoltage X-rays as opposed to the orthovoltage X-rays typically employed in research settings. Here, radiocatalytically active Ti-based nanomaterials for clinical X-ray therapy settings are designed.

View Article and Find Full Text PDF

Understanding the localization and the interactions of biomolecules at the nanoscale and in the cellular context remains challenging. Electron microscopy (EM), unlike light-based microscopy, gives access to the cellular ultrastructure yet results in grey-scale images and averts unambiguous (co-)localization of biomolecules. Multimodal nanoparticle-based protein labels for correlative cathodoluminescence electron microscopy (CCLEM) and energy-dispersive X-ray spectromicroscopy (EDX-SM) are presented.

View Article and Find Full Text PDF

A careful design of the nanocrystal architecture can strongly enhance the nanocrystal function. So far, this strategy has faced a synthetic bottleneck in the case of refractory oxides. Here we demonstrate the epitaxial growth of hafnia shells onto zirconia cores and pure zirconia shells onto europium-doped zirconia cores.

View Article and Find Full Text PDF

Photocatalysis is a promising treatment method to remove pollutants from water. TiO-P25 is a commercially available model photocatalyst, which very efficiently degrades organic pollutants under UVA light exposure. However, the collection and the recovery of TiO-P25 from cleaned water poses significant difficulties, severely limiting its usability.

View Article and Find Full Text PDF

Engineering of catalytically active inorganic nanomaterials holds promising prospects for biomedicine. Catalytically active metal oxides show applications in enhancing wound healing but have also been employed to induce cell death in photodynamic or radiation therapy. Upon introduction into a biological system, nanomaterials are exposed to complex fluids, causing interaction and adsorption of ions and proteins.

View Article and Find Full Text PDF

Seroma formation is a common postoperative complication. Fibrin-based glues are typically employed in an attempt to seal the cavity. Recently, the first nanoparticle (NP)-based treatment approaches have emerged.

View Article and Find Full Text PDF

Combustion aerosol processes can uniquely embed noble metals into semiconducting particles. Here, monocrystalline SnO particles embedded with Pd and/or PdO were made by flame spray pyrolysis (FSP) of appropriate precursors through microexplosions by droplet-to-particle conversion as the crystal size was proportional to the cube root of precursor solution concentration, . These particles were air-annealed and leached with nitric acid for removal of metallic Pd from their surface.

View Article and Find Full Text PDF

Hexagonal boron nitride (hBN) is an emerging 2D material attracting significant attention due to its superior electrical, chemical, and therapeutic properties. However, inhalation toxicity mechanisms of hBN in human lung cells are poorly understood. Here, cellular interaction and effects of hBN nanosheets is investigated in alveolar epithelial cells cultured on porous inserts and exposed under air-liquid interface conditions for 24 h.

View Article and Find Full Text PDF

Hip arthroplasty effectively treats advanced osteoarthritis and is therefore entitled as "operation of the 20th century." With demographic shifts, the USA alone is projected to perform up to 850 000 arthroplasties annually by 2030. Many implants now feature a ceramic head, valued for strength and wear resistance.

View Article and Find Full Text PDF

The field of nanomedicine is rapidly evolving, with new materials and formulations being reported almost daily. In this respect, inorganic and inorganic-organic composite nanomaterials have gained significant attention. However, the use of new materials in clinical trials and their final approval as drugs has been hampered by several challenges, one of which is the complex and difficult to control nanomaterial chemistry that takes place within the body.

View Article and Find Full Text PDF

Radiotherapy is a cornerstone of cancer treatment. However, due to the low tissue specificity of ionizing radiation, damage to the surrounding healthy tissue of the tumor remains a significant challenge. In recent years, radio-enhancers based on inorganic nanomaterials have gained considerable interest.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have found increasing applications in the biomedical field due to their unique properties and high modularity. Although the limited stability of MOFs in biological environments is increasingly recognized, analytical techniques have not yet been harnessed to their full potential to assess the biological fate of MOFs. Here, we investigate the environment-dependent biochemical transformations of widely researched nanosized MOFs (nMOFs) under conditions relevant to their medical application.

View Article and Find Full Text PDF

Inorganic nanomaterials have gained increasing attention in radiation oncology, owing to their radiation therapy enhancing properties. To accelerate candidate material selection and overcome the disconnect between conventional 2D cell culture and in vivo findings, screening platforms unifying high-throughput with physiologically relevant endpoint analysis based on 3D in vitro models are promising. Here, a 3D tumor spheroid co-culture model based on cancerous and healthy human cells is presented for the concurrent assessment of radio-enhancement efficacy, toxicity, and intratissural biodistribution with full ultrastructural context of radioenhancer candidate materials.

View Article and Find Full Text PDF

Imaging of iron-based nanoparticles (NPs) remains challenging because of the presence of endogenous iron in tissues that is difficult to distinguish from exogenous iron originating from the NPs. Here, an analytical cascade for characterizing the biodistribution of biomedically relevant iron-based NPs from the organ scale to the cellular and subcellular scales is introduced. The biodistribution on an organ level is assessed by elemental analysis and quantification of magnetic iron by electron paramagnetic resonance, which allowed differentiation of exogenous and endogenous iron.

View Article and Find Full Text PDF
Article Synopsis
  • Velvet worms' slime quickly traps prey in a biopolymer network that is as strong as industrial polymers, but the rapid hardening process is not fully understood.
  • Researchers investigated the slime's composition and structure before and after it is expelled, discovering additional elements like encapsulated phosphate and carbonate salts.
  • The findings suggest that these salts dissolve during slime hardening, triggering a reaction that speeds up the drying process, influencing protein structure, and potentially inspiring new fast-drying polymers.
View Article and Find Full Text PDF

Nano-sized metal organic frameworks (nanoMOFs) have gained increasing importance in biomedicine due to their tunable properties. In addition to their use as carriers in drug delivery, nanoMOFs containing hafnium have been successfully employed as radio-enhancers augmenting damage caused by X-ray irradiation in tumor tissue. While results are encouraging, there is little mechanistic understanding available, and the biological fate of these radio-enhancer nanoparticles remains largely unexplored.

View Article and Find Full Text PDF

Since the start of the current COVID-19 pandemic, for the first time a significant fraction of the world's population cover their respiratory system for an extended period with mostly medical facemasks and textile masks. This new situation raises questions about the extent of mask related debris (fibers and particles) being released and inhaled and possible adverse effects on human health. This study aimed to quantify the debris release from a textile-based facemask in comparison to a surgical mask and a reference cotton textile using both liquid and air extraction.

View Article and Find Full Text PDF

Nanoparticle-based radioenhancement is a promising strategy for extending the therapeutic ratio of radiotherapy. While (pre)clinical results are encouraging, sound mechanistic understanding of nanoparticle radioenhancement, especially the effects of nanomaterial selection and irradiation conditions, has yet to be achieved. Here, we investigate the radioenhancement mechanisms of selected metal oxide nanomaterials (including SiO, TiO, WO and HfO), TiN and Au nanoparticles for radiotherapy utilizing photons (150 kVp and 6 MV) and 100 MeV protons.

View Article and Find Full Text PDF

Preeclampsia is one of the most dangerous diseases in pregnancy. Because of the hypertensive nature of preeclampsia, placental calcifications are believed to be a predictor for its occurrence, analogous to their role in cardiovascular diseases. However, the prevalence and the relevance of calcifications for the clinical outcome with respect to preeclampsia remains controversial.

View Article and Find Full Text PDF

Engineered nanoparticles (NPs) that are released into wastewater are retained by wastewater treatment plants (WWTPs) and accumulate in sewage sludge. Increasing shares of sludge are incinerated and landfilled, especially in industrialized countries. It is debated whether certain types of NPs can outlive the incineration process and subsequently be released from sewage sludge ash (SSA) landfills.

View Article and Find Full Text PDF

Implant infections due to bacterial biofilms constitute a major healthcare challenge today. One way to address this clinical need is to modify the implant surface with an antimicrobial nanomaterial. Among such nanomaterials, nanosilver is arguably the most powerful one, due to its strong and broad antimicrobial activity.

View Article and Find Full Text PDF

Noble metal additives are widely used to improve the performance of metal oxide gas sensors, most prominently with palladium on tin oxide. Here, we photodeposit different quantities of Pd (0-3 mol%) onto nanostructured SnO and determine their effect on sensing acetone, a critical tracer of lipolysis by breath analysis. We focus on understanding the effect of operating temperature on acetone sensing performance (sensitivity and response/recovery times) and its relationship to catalytic oxidation of acetone through a packed bed of such Pd-loaded SnO.

View Article and Find Full Text PDF